LCOV - code coverage report
Current view: top level - kernel - workqueue.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 627 1034 60.6 %
Date: 2015-04-12 14:34:49 Functions: 61 95 64.2 %

          Line data    Source code
       1             : /*
       2             :  * kernel/workqueue.c - generic async execution with shared worker pool
       3             :  *
       4             :  * Copyright (C) 2002           Ingo Molnar
       5             :  *
       6             :  *   Derived from the taskqueue/keventd code by:
       7             :  *     David Woodhouse <dwmw2@infradead.org>
       8             :  *     Andrew Morton
       9             :  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
      10             :  *     Theodore Ts'o <tytso@mit.edu>
      11             :  *
      12             :  * Made to use alloc_percpu by Christoph Lameter.
      13             :  *
      14             :  * Copyright (C) 2010           SUSE Linux Products GmbH
      15             :  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
      16             :  *
      17             :  * This is the generic async execution mechanism.  Work items as are
      18             :  * executed in process context.  The worker pool is shared and
      19             :  * automatically managed.  There are two worker pools for each CPU (one for
      20             :  * normal work items and the other for high priority ones) and some extra
      21             :  * pools for workqueues which are not bound to any specific CPU - the
      22             :  * number of these backing pools is dynamic.
      23             :  *
      24             :  * Please read Documentation/workqueue.txt for details.
      25             :  */
      26             : 
      27             : #include <linux/export.h>
      28             : #include <linux/kernel.h>
      29             : #include <linux/sched.h>
      30             : #include <linux/init.h>
      31             : #include <linux/signal.h>
      32             : #include <linux/completion.h>
      33             : #include <linux/workqueue.h>
      34             : #include <linux/slab.h>
      35             : #include <linux/cpu.h>
      36             : #include <linux/notifier.h>
      37             : #include <linux/kthread.h>
      38             : #include <linux/hardirq.h>
      39             : #include <linux/mempolicy.h>
      40             : #include <linux/freezer.h>
      41             : #include <linux/kallsyms.h>
      42             : #include <linux/debug_locks.h>
      43             : #include <linux/lockdep.h>
      44             : #include <linux/idr.h>
      45             : #include <linux/jhash.h>
      46             : #include <linux/hashtable.h>
      47             : #include <linux/rculist.h>
      48             : #include <linux/nodemask.h>
      49             : #include <linux/moduleparam.h>
      50             : #include <linux/uaccess.h>
      51             : 
      52             : #include "workqueue_internal.h"
      53             : 
      54             : enum {
      55             :         /*
      56             :          * worker_pool flags
      57             :          *
      58             :          * A bound pool is either associated or disassociated with its CPU.
      59             :          * While associated (!DISASSOCIATED), all workers are bound to the
      60             :          * CPU and none has %WORKER_UNBOUND set and concurrency management
      61             :          * is in effect.
      62             :          *
      63             :          * While DISASSOCIATED, the cpu may be offline and all workers have
      64             :          * %WORKER_UNBOUND set and concurrency management disabled, and may
      65             :          * be executing on any CPU.  The pool behaves as an unbound one.
      66             :          *
      67             :          * Note that DISASSOCIATED should be flipped only while holding
      68             :          * attach_mutex to avoid changing binding state while
      69             :          * worker_attach_to_pool() is in progress.
      70             :          */
      71             :         POOL_DISASSOCIATED      = 1 << 2, /* cpu can't serve workers */
      72             : 
      73             :         /* worker flags */
      74             :         WORKER_DIE              = 1 << 1, /* die die die */
      75             :         WORKER_IDLE             = 1 << 2, /* is idle */
      76             :         WORKER_PREP             = 1 << 3, /* preparing to run works */
      77             :         WORKER_CPU_INTENSIVE    = 1 << 6, /* cpu intensive */
      78             :         WORKER_UNBOUND          = 1 << 7, /* worker is unbound */
      79             :         WORKER_REBOUND          = 1 << 8, /* worker was rebound */
      80             : 
      81             :         WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
      82             :                                   WORKER_UNBOUND | WORKER_REBOUND,
      83             : 
      84             :         NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
      85             : 
      86             :         UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
      87             :         BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
      88             : 
      89             :         MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
      90             :         IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
      91             : 
      92             :         MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
      93             :                                                 /* call for help after 10ms
      94             :                                                    (min two ticks) */
      95             :         MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
      96             :         CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
      97             : 
      98             :         /*
      99             :          * Rescue workers are used only on emergencies and shared by
     100             :          * all cpus.  Give MIN_NICE.
     101             :          */
     102             :         RESCUER_NICE_LEVEL      = MIN_NICE,
     103             :         HIGHPRI_NICE_LEVEL      = MIN_NICE,
     104             : 
     105             :         WQ_NAME_LEN             = 24,
     106             : };
     107             : 
     108             : /*
     109             :  * Structure fields follow one of the following exclusion rules.
     110             :  *
     111             :  * I: Modifiable by initialization/destruction paths and read-only for
     112             :  *    everyone else.
     113             :  *
     114             :  * P: Preemption protected.  Disabling preemption is enough and should
     115             :  *    only be modified and accessed from the local cpu.
     116             :  *
     117             :  * L: pool->lock protected.  Access with pool->lock held.
     118             :  *
     119             :  * X: During normal operation, modification requires pool->lock and should
     120             :  *    be done only from local cpu.  Either disabling preemption on local
     121             :  *    cpu or grabbing pool->lock is enough for read access.  If
     122             :  *    POOL_DISASSOCIATED is set, it's identical to L.
     123             :  *
     124             :  * A: pool->attach_mutex protected.
     125             :  *
     126             :  * PL: wq_pool_mutex protected.
     127             :  *
     128             :  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
     129             :  *
     130             :  * WQ: wq->mutex protected.
     131             :  *
     132             :  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
     133             :  *
     134             :  * MD: wq_mayday_lock protected.
     135             :  */
     136             : 
     137             : /* struct worker is defined in workqueue_internal.h */
     138             : 
     139             : struct worker_pool {
     140             :         spinlock_t              lock;           /* the pool lock */
     141             :         int                     cpu;            /* I: the associated cpu */
     142             :         int                     node;           /* I: the associated node ID */
     143             :         int                     id;             /* I: pool ID */
     144             :         unsigned int            flags;          /* X: flags */
     145             : 
     146             :         struct list_head        worklist;       /* L: list of pending works */
     147             :         int                     nr_workers;     /* L: total number of workers */
     148             : 
     149             :         /* nr_idle includes the ones off idle_list for rebinding */
     150             :         int                     nr_idle;        /* L: currently idle ones */
     151             : 
     152             :         struct list_head        idle_list;      /* X: list of idle workers */
     153             :         struct timer_list       idle_timer;     /* L: worker idle timeout */
     154             :         struct timer_list       mayday_timer;   /* L: SOS timer for workers */
     155             : 
     156             :         /* a workers is either on busy_hash or idle_list, or the manager */
     157             :         DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
     158             :                                                 /* L: hash of busy workers */
     159             : 
     160             :         /* see manage_workers() for details on the two manager mutexes */
     161             :         struct mutex            manager_arb;    /* manager arbitration */
     162             :         struct mutex            attach_mutex;   /* attach/detach exclusion */
     163             :         struct list_head        workers;        /* A: attached workers */
     164             :         struct completion       *detach_completion; /* all workers detached */
     165             : 
     166             :         struct ida              worker_ida;     /* worker IDs for task name */
     167             : 
     168             :         struct workqueue_attrs  *attrs;         /* I: worker attributes */
     169             :         struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
     170             :         int                     refcnt;         /* PL: refcnt for unbound pools */
     171             : 
     172             :         /*
     173             :          * The current concurrency level.  As it's likely to be accessed
     174             :          * from other CPUs during try_to_wake_up(), put it in a separate
     175             :          * cacheline.
     176             :          */
     177             :         atomic_t                nr_running ____cacheline_aligned_in_smp;
     178             : 
     179             :         /*
     180             :          * Destruction of pool is sched-RCU protected to allow dereferences
     181             :          * from get_work_pool().
     182             :          */
     183             :         struct rcu_head         rcu;
     184             : } ____cacheline_aligned_in_smp;
     185             : 
     186             : /*
     187             :  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
     188             :  * of work_struct->data are used for flags and the remaining high bits
     189             :  * point to the pwq; thus, pwqs need to be aligned at two's power of the
     190             :  * number of flag bits.
     191             :  */
     192             : struct pool_workqueue {
     193             :         struct worker_pool      *pool;          /* I: the associated pool */
     194             :         struct workqueue_struct *wq;            /* I: the owning workqueue */
     195             :         int                     work_color;     /* L: current color */
     196             :         int                     flush_color;    /* L: flushing color */
     197             :         int                     refcnt;         /* L: reference count */
     198             :         int                     nr_in_flight[WORK_NR_COLORS];
     199             :                                                 /* L: nr of in_flight works */
     200             :         int                     nr_active;      /* L: nr of active works */
     201             :         int                     max_active;     /* L: max active works */
     202             :         struct list_head        delayed_works;  /* L: delayed works */
     203             :         struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
     204             :         struct list_head        mayday_node;    /* MD: node on wq->maydays */
     205             : 
     206             :         /*
     207             :          * Release of unbound pwq is punted to system_wq.  See put_pwq()
     208             :          * and pwq_unbound_release_workfn() for details.  pool_workqueue
     209             :          * itself is also sched-RCU protected so that the first pwq can be
     210             :          * determined without grabbing wq->mutex.
     211             :          */
     212             :         struct work_struct      unbound_release_work;
     213             :         struct rcu_head         rcu;
     214             : } __aligned(1 << WORK_STRUCT_FLAG_BITS);
     215             : 
     216             : /*
     217             :  * Structure used to wait for workqueue flush.
     218             :  */
     219             : struct wq_flusher {
     220             :         struct list_head        list;           /* WQ: list of flushers */
     221             :         int                     flush_color;    /* WQ: flush color waiting for */
     222             :         struct completion       done;           /* flush completion */
     223             : };
     224             : 
     225             : struct wq_device;
     226             : 
     227             : /*
     228             :  * The externally visible workqueue.  It relays the issued work items to
     229             :  * the appropriate worker_pool through its pool_workqueues.
     230             :  */
     231             : struct workqueue_struct {
     232             :         struct list_head        pwqs;           /* WR: all pwqs of this wq */
     233             :         struct list_head        list;           /* PL: list of all workqueues */
     234             : 
     235             :         struct mutex            mutex;          /* protects this wq */
     236             :         int                     work_color;     /* WQ: current work color */
     237             :         int                     flush_color;    /* WQ: current flush color */
     238             :         atomic_t                nr_pwqs_to_flush; /* flush in progress */
     239             :         struct wq_flusher       *first_flusher; /* WQ: first flusher */
     240             :         struct list_head        flusher_queue;  /* WQ: flush waiters */
     241             :         struct list_head        flusher_overflow; /* WQ: flush overflow list */
     242             : 
     243             :         struct list_head        maydays;        /* MD: pwqs requesting rescue */
     244             :         struct worker           *rescuer;       /* I: rescue worker */
     245             : 
     246             :         int                     nr_drainers;    /* WQ: drain in progress */
     247             :         int                     saved_max_active; /* WQ: saved pwq max_active */
     248             : 
     249             :         struct workqueue_attrs  *unbound_attrs; /* WQ: only for unbound wqs */
     250             :         struct pool_workqueue   *dfl_pwq;       /* WQ: only for unbound wqs */
     251             : 
     252             : #ifdef CONFIG_SYSFS
     253             :         struct wq_device        *wq_dev;        /* I: for sysfs interface */
     254             : #endif
     255             : #ifdef CONFIG_LOCKDEP
     256             :         struct lockdep_map      lockdep_map;
     257             : #endif
     258             :         char                    name[WQ_NAME_LEN]; /* I: workqueue name */
     259             : 
     260             :         /* hot fields used during command issue, aligned to cacheline */
     261             :         unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
     262             :         struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
     263             :         struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
     264             : };
     265             : 
     266             : static struct kmem_cache *pwq_cache;
     267             : 
     268             : static cpumask_var_t *wq_numa_possible_cpumask;
     269             :                                         /* possible CPUs of each node */
     270             : 
     271             : static bool wq_disable_numa;
     272             : module_param_named(disable_numa, wq_disable_numa, bool, 0444);
     273             : 
     274             : /* see the comment above the definition of WQ_POWER_EFFICIENT */
     275             : #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
     276             : static bool wq_power_efficient = true;
     277             : #else
     278             : static bool wq_power_efficient;
     279             : #endif
     280             : 
     281             : module_param_named(power_efficient, wq_power_efficient, bool, 0444);
     282             : 
     283             : static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
     284             : 
     285             : /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
     286             : static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
     287             : 
     288             : static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
     289             : static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
     290             : 
     291             : static LIST_HEAD(workqueues);           /* PL: list of all workqueues */
     292             : static bool workqueue_freezing;         /* PL: have wqs started freezing? */
     293             : 
     294             : /* the per-cpu worker pools */
     295             : static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
     296             :                                      cpu_worker_pools);
     297             : 
     298             : static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
     299             : 
     300             : /* PL: hash of all unbound pools keyed by pool->attrs */
     301             : static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
     302             : 
     303             : /* I: attributes used when instantiating standard unbound pools on demand */
     304             : static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
     305             : 
     306             : /* I: attributes used when instantiating ordered pools on demand */
     307             : static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
     308             : 
     309             : struct workqueue_struct *system_wq __read_mostly;
     310             : EXPORT_SYMBOL(system_wq);
     311             : struct workqueue_struct *system_highpri_wq __read_mostly;
     312             : EXPORT_SYMBOL_GPL(system_highpri_wq);
     313             : struct workqueue_struct *system_long_wq __read_mostly;
     314             : EXPORT_SYMBOL_GPL(system_long_wq);
     315             : struct workqueue_struct *system_unbound_wq __read_mostly;
     316             : EXPORT_SYMBOL_GPL(system_unbound_wq);
     317             : struct workqueue_struct *system_freezable_wq __read_mostly;
     318             : EXPORT_SYMBOL_GPL(system_freezable_wq);
     319             : struct workqueue_struct *system_power_efficient_wq __read_mostly;
     320             : EXPORT_SYMBOL_GPL(system_power_efficient_wq);
     321             : struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
     322             : EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
     323             : 
     324             : static int worker_thread(void *__worker);
     325             : static void copy_workqueue_attrs(struct workqueue_attrs *to,
     326             :                                  const struct workqueue_attrs *from);
     327             : 
     328             : #define CREATE_TRACE_POINTS
     329             : #include <trace/events/workqueue.h>
     330             : 
     331             : #define assert_rcu_or_pool_mutex()                                      \
     332             :         rcu_lockdep_assert(rcu_read_lock_sched_held() ||                \
     333             :                            lockdep_is_held(&wq_pool_mutex),         \
     334             :                            "sched RCU or wq_pool_mutex should be held")
     335             : 
     336             : #define assert_rcu_or_wq_mutex(wq)                                      \
     337             :         rcu_lockdep_assert(rcu_read_lock_sched_held() ||                \
     338             :                            lockdep_is_held(&wq->mutex),                  \
     339             :                            "sched RCU or wq->mutex should be held")
     340             : 
     341             : #define for_each_cpu_worker_pool(pool, cpu)                             \
     342             :         for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];           \
     343             :              (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
     344             :              (pool)++)
     345             : 
     346             : /**
     347             :  * for_each_pool - iterate through all worker_pools in the system
     348             :  * @pool: iteration cursor
     349             :  * @pi: integer used for iteration
     350             :  *
     351             :  * This must be called either with wq_pool_mutex held or sched RCU read
     352             :  * locked.  If the pool needs to be used beyond the locking in effect, the
     353             :  * caller is responsible for guaranteeing that the pool stays online.
     354             :  *
     355             :  * The if/else clause exists only for the lockdep assertion and can be
     356             :  * ignored.
     357             :  */
     358             : #define for_each_pool(pool, pi)                                         \
     359             :         idr_for_each_entry(&worker_pool_idr, pool, pi)                      \
     360             :                 if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
     361             :                 else
     362             : 
     363             : /**
     364             :  * for_each_pool_worker - iterate through all workers of a worker_pool
     365             :  * @worker: iteration cursor
     366             :  * @pool: worker_pool to iterate workers of
     367             :  *
     368             :  * This must be called with @pool->attach_mutex.
     369             :  *
     370             :  * The if/else clause exists only for the lockdep assertion and can be
     371             :  * ignored.
     372             :  */
     373             : #define for_each_pool_worker(worker, pool)                              \
     374             :         list_for_each_entry((worker), &(pool)->workers, node)            \
     375             :                 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
     376             :                 else
     377             : 
     378             : /**
     379             :  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
     380             :  * @pwq: iteration cursor
     381             :  * @wq: the target workqueue
     382             :  *
     383             :  * This must be called either with wq->mutex held or sched RCU read locked.
     384             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     385             :  * responsible for guaranteeing that the pwq stays online.
     386             :  *
     387             :  * The if/else clause exists only for the lockdep assertion and can be
     388             :  * ignored.
     389             :  */
     390             : #define for_each_pwq(pwq, wq)                                           \
     391             :         list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)           \
     392             :                 if (({ assert_rcu_or_wq_mutex(wq); false; })) { }       \
     393             :                 else
     394             : 
     395             : #ifdef CONFIG_DEBUG_OBJECTS_WORK
     396             : 
     397             : static struct debug_obj_descr work_debug_descr;
     398             : 
     399             : static void *work_debug_hint(void *addr)
     400             : {
     401             :         return ((struct work_struct *) addr)->func;
     402             : }
     403             : 
     404             : /*
     405             :  * fixup_init is called when:
     406             :  * - an active object is initialized
     407             :  */
     408             : static int work_fixup_init(void *addr, enum debug_obj_state state)
     409             : {
     410             :         struct work_struct *work = addr;
     411             : 
     412             :         switch (state) {
     413             :         case ODEBUG_STATE_ACTIVE:
     414             :                 cancel_work_sync(work);
     415             :                 debug_object_init(work, &work_debug_descr);
     416             :                 return 1;
     417             :         default:
     418             :                 return 0;
     419             :         }
     420             : }
     421             : 
     422             : /*
     423             :  * fixup_activate is called when:
     424             :  * - an active object is activated
     425             :  * - an unknown object is activated (might be a statically initialized object)
     426             :  */
     427             : static int work_fixup_activate(void *addr, enum debug_obj_state state)
     428             : {
     429             :         struct work_struct *work = addr;
     430             : 
     431             :         switch (state) {
     432             : 
     433             :         case ODEBUG_STATE_NOTAVAILABLE:
     434             :                 /*
     435             :                  * This is not really a fixup. The work struct was
     436             :                  * statically initialized. We just make sure that it
     437             :                  * is tracked in the object tracker.
     438             :                  */
     439             :                 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
     440             :                         debug_object_init(work, &work_debug_descr);
     441             :                         debug_object_activate(work, &work_debug_descr);
     442             :                         return 0;
     443             :                 }
     444             :                 WARN_ON_ONCE(1);
     445             :                 return 0;
     446             : 
     447             :         case ODEBUG_STATE_ACTIVE:
     448             :                 WARN_ON(1);
     449             : 
     450             :         default:
     451             :                 return 0;
     452             :         }
     453             : }
     454             : 
     455             : /*
     456             :  * fixup_free is called when:
     457             :  * - an active object is freed
     458             :  */
     459             : static int work_fixup_free(void *addr, enum debug_obj_state state)
     460             : {
     461             :         struct work_struct *work = addr;
     462             : 
     463             :         switch (state) {
     464             :         case ODEBUG_STATE_ACTIVE:
     465             :                 cancel_work_sync(work);
     466             :                 debug_object_free(work, &work_debug_descr);
     467             :                 return 1;
     468             :         default:
     469             :                 return 0;
     470             :         }
     471             : }
     472             : 
     473             : static struct debug_obj_descr work_debug_descr = {
     474             :         .name           = "work_struct",
     475             :         .debug_hint     = work_debug_hint,
     476             :         .fixup_init     = work_fixup_init,
     477             :         .fixup_activate = work_fixup_activate,
     478             :         .fixup_free     = work_fixup_free,
     479             : };
     480             : 
     481             : static inline void debug_work_activate(struct work_struct *work)
     482             : {
     483             :         debug_object_activate(work, &work_debug_descr);
     484             : }
     485             : 
     486             : static inline void debug_work_deactivate(struct work_struct *work)
     487             : {
     488             :         debug_object_deactivate(work, &work_debug_descr);
     489             : }
     490             : 
     491             : void __init_work(struct work_struct *work, int onstack)
     492             : {
     493             :         if (onstack)
     494             :                 debug_object_init_on_stack(work, &work_debug_descr);
     495             :         else
     496             :                 debug_object_init(work, &work_debug_descr);
     497             : }
     498             : EXPORT_SYMBOL_GPL(__init_work);
     499             : 
     500             : void destroy_work_on_stack(struct work_struct *work)
     501             : {
     502             :         debug_object_free(work, &work_debug_descr);
     503             : }
     504             : EXPORT_SYMBOL_GPL(destroy_work_on_stack);
     505             : 
     506             : void destroy_delayed_work_on_stack(struct delayed_work *work)
     507             : {
     508             :         destroy_timer_on_stack(&work->timer);
     509             :         debug_object_free(&work->work, &work_debug_descr);
     510             : }
     511             : EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
     512             : 
     513             : #else
     514             : static inline void debug_work_activate(struct work_struct *work) { }
     515             : static inline void debug_work_deactivate(struct work_struct *work) { }
     516             : #endif
     517             : 
     518             : /**
     519             :  * worker_pool_assign_id - allocate ID and assing it to @pool
     520             :  * @pool: the pool pointer of interest
     521             :  *
     522             :  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
     523             :  * successfully, -errno on failure.
     524             :  */
     525           3 : static int worker_pool_assign_id(struct worker_pool *pool)
     526             : {
     527             :         int ret;
     528             : 
     529             :         lockdep_assert_held(&wq_pool_mutex);
     530             : 
     531           3 :         ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
     532             :                         GFP_KERNEL);
     533           3 :         if (ret >= 0) {
     534           3 :                 pool->id = ret;
     535           3 :                 return 0;
     536             :         }
     537             :         return ret;
     538             : }
     539             : 
     540             : /**
     541             :  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
     542             :  * @wq: the target workqueue
     543             :  * @node: the node ID
     544             :  *
     545             :  * This must be called either with pwq_lock held or sched RCU read locked.
     546             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     547             :  * responsible for guaranteeing that the pwq stays online.
     548             :  *
     549             :  * Return: The unbound pool_workqueue for @node.
     550             :  */
     551             : static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
     552             :                                                   int node)
     553             : {
     554             :         assert_rcu_or_wq_mutex(wq);
     555        2763 :         return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
     556             : }
     557             : 
     558             : static unsigned int work_color_to_flags(int color)
     559             : {
     560       42745 :         return color << WORK_STRUCT_COLOR_SHIFT;
     561             : }
     562             : 
     563             : static int get_work_color(struct work_struct *work)
     564             : {
     565       42754 :         return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
     566             :                 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
     567             : }
     568             : 
     569             : static int work_next_color(int color)
     570             : {
     571           2 :         return (color + 1) % WORK_NR_COLORS;
     572             : }
     573             : 
     574             : /*
     575             :  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
     576             :  * contain the pointer to the queued pwq.  Once execution starts, the flag
     577             :  * is cleared and the high bits contain OFFQ flags and pool ID.
     578             :  *
     579             :  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
     580             :  * and clear_work_data() can be used to set the pwq, pool or clear
     581             :  * work->data.  These functions should only be called while the work is
     582             :  * owned - ie. while the PENDING bit is set.
     583             :  *
     584             :  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
     585             :  * corresponding to a work.  Pool is available once the work has been
     586             :  * queued anywhere after initialization until it is sync canceled.  pwq is
     587             :  * available only while the work item is queued.
     588             :  *
     589             :  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
     590             :  * canceled.  While being canceled, a work item may have its PENDING set
     591             :  * but stay off timer and worklist for arbitrarily long and nobody should
     592             :  * try to steal the PENDING bit.
     593             :  */
     594             : static inline void set_work_data(struct work_struct *work, unsigned long data,
     595             :                                  unsigned long flags)
     596             : {
     597             :         WARN_ON_ONCE(!work_pending(work));
     598       86909 :         atomic_long_set(&work->data, data | flags | work_static(work));
     599             : }
     600             : 
     601             : static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
     602             :                          unsigned long extra_flags)
     603             : {
     604       42754 :         set_work_data(work, (unsigned long)pwq,
     605             :                       WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
     606             : }
     607             : 
     608             : static void set_work_pool_and_keep_pending(struct work_struct *work,
     609             :                                            int pool_id)
     610             : {
     611           0 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
     612             :                       WORK_STRUCT_PENDING);
     613             : }
     614             : 
     615             : static void set_work_pool_and_clear_pending(struct work_struct *work,
     616             :                                             int pool_id)
     617             : {
     618             :         /*
     619             :          * The following wmb is paired with the implied mb in
     620             :          * test_and_set_bit(PENDING) and ensures all updates to @work made
     621             :          * here are visible to and precede any updates by the next PENDING
     622             :          * owner.
     623             :          */
     624       42757 :         smp_wmb();
     625       42757 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
     626             : }
     627             : 
     628             : static void clear_work_data(struct work_struct *work)
     629             : {
     630        1398 :         smp_wmb();      /* see set_work_pool_and_clear_pending() */
     631             :         set_work_data(work, WORK_STRUCT_NO_POOL, 0);
     632             : }
     633             : 
     634             : static struct pool_workqueue *get_work_pwq(struct work_struct *work)
     635             : {
     636       42840 :         unsigned long data = atomic_long_read(&work->data);
     637             : 
     638       42840 :         if (data & WORK_STRUCT_PWQ)
     639       42767 :                 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
     640             :         else
     641             :                 return NULL;
     642             : }
     643             : 
     644             : /**
     645             :  * get_work_pool - return the worker_pool a given work was associated with
     646             :  * @work: the work item of interest
     647             :  *
     648             :  * Pools are created and destroyed under wq_pool_mutex, and allows read
     649             :  * access under sched-RCU read lock.  As such, this function should be
     650             :  * called under wq_pool_mutex or with preemption disabled.
     651             :  *
     652             :  * All fields of the returned pool are accessible as long as the above
     653             :  * mentioned locking is in effect.  If the returned pool needs to be used
     654             :  * beyond the critical section, the caller is responsible for ensuring the
     655             :  * returned pool is and stays online.
     656             :  *
     657             :  * Return: The worker_pool @work was last associated with.  %NULL if none.
     658             :  */
     659       46540 : static struct worker_pool *get_work_pool(struct work_struct *work)
     660             : {
     661       46540 :         unsigned long data = atomic_long_read(&work->data);
     662             :         int pool_id;
     663             : 
     664             :         assert_rcu_or_pool_mutex();
     665             : 
     666       46540 :         if (data & WORK_STRUCT_PWQ)
     667           9 :                 return ((struct pool_workqueue *)
     668           9 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
     669             : 
     670       46531 :         pool_id = data >> WORK_OFFQ_POOL_SHIFT;
     671       46531 :         if (pool_id == WORK_OFFQ_POOL_NONE)
     672             :                 return NULL;
     673             : 
     674       41798 :         return idr_find(&worker_pool_idr, pool_id);
     675             : }
     676             : 
     677             : /**
     678             :  * get_work_pool_id - return the worker pool ID a given work is associated with
     679             :  * @work: the work item of interest
     680             :  *
     681             :  * Return: The worker_pool ID @work was last associated with.
     682             :  * %WORK_OFFQ_POOL_NONE if none.
     683             :  */
     684             : static int get_work_pool_id(struct work_struct *work)
     685             : {
     686        1401 :         unsigned long data = atomic_long_read(&work->data);
     687             : 
     688        1401 :         if (data & WORK_STRUCT_PWQ)
     689           0 :                 return ((struct pool_workqueue *)
     690           0 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
     691             : 
     692        1401 :         return data >> WORK_OFFQ_POOL_SHIFT;
     693             : }
     694             : 
     695             : static void mark_work_canceling(struct work_struct *work)
     696             : {
     697        1398 :         unsigned long pool_id = get_work_pool_id(work);
     698             : 
     699        1398 :         pool_id <<= WORK_OFFQ_POOL_SHIFT;
     700             :         set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
     701             : }
     702             : 
     703             : static bool work_is_canceling(struct work_struct *work)
     704             : {
     705           0 :         unsigned long data = atomic_long_read(&work->data);
     706             : 
     707           0 :         return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
     708             : }
     709             : 
     710             : /*
     711             :  * Policy functions.  These define the policies on how the global worker
     712             :  * pools are managed.  Unless noted otherwise, these functions assume that
     713             :  * they're being called with pool->lock held.
     714             :  */
     715             : 
     716             : static bool __need_more_worker(struct worker_pool *pool)
     717             : {
     718       85483 :         return !atomic_read(&pool->nr_running);
     719             : }
     720             : 
     721             : /*
     722             :  * Need to wake up a worker?  Called from anything but currently
     723             :  * running workers.
     724             :  *
     725             :  * Note that, because unbound workers never contribute to nr_running, this
     726             :  * function will always return %true for unbound pools as long as the
     727             :  * worklist isn't empty.
     728             :  */
     729             : static bool need_more_worker(struct worker_pool *pool)
     730             : {
     731      212839 :         return !list_empty(&pool->worklist) && __need_more_worker(pool);
     732             : }
     733             : 
     734             : /* Can I start working?  Called from busy but !running workers. */
     735             : static bool may_start_working(struct worker_pool *pool)
     736             : {
     737             :         return pool->nr_idle;
     738             : }
     739             : 
     740             : /* Do I need to keep working?  Called from currently running workers. */
     741             : static bool keep_working(struct worker_pool *pool)
     742             : {
     743       43247 :         return !list_empty(&pool->worklist) &&
     744         502 :                 atomic_read(&pool->nr_running) <= 1;
     745             : }
     746             : 
     747             : /* Do we need a new worker?  Called from manager. */
     748           7 : static bool need_to_create_worker(struct worker_pool *pool)
     749             : {
     750          16 :         return need_more_worker(pool) && !may_start_working(pool);
     751             : }
     752             : 
     753             : /* Do we have too many workers and should some go away? */
     754             : static bool too_many_workers(struct worker_pool *pool)
     755             : {
     756             :         bool managing = mutex_is_locked(&pool->manager_arb);
     757       42307 :         int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
     758       42307 :         int nr_busy = pool->nr_workers - nr_idle;
     759             : 
     760       42307 :         return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
     761             : }
     762             : 
     763             : /*
     764             :  * Wake up functions.
     765             :  */
     766             : 
     767             : /* Return the first idle worker.  Safe with preemption disabled */
     768             : static struct worker *first_idle_worker(struct worker_pool *pool)
     769             : {
     770       85508 :         if (unlikely(list_empty(&pool->idle_list)))
     771             :                 return NULL;
     772             : 
     773             :         return list_first_entry(&pool->idle_list, struct worker, entry);
     774             : }
     775             : 
     776             : /**
     777             :  * wake_up_worker - wake up an idle worker
     778             :  * @pool: worker pool to wake worker from
     779             :  *
     780             :  * Wake up the first idle worker of @pool.
     781             :  *
     782             :  * CONTEXT:
     783             :  * spin_lock_irq(pool->lock).
     784             :  */
     785       42747 : static void wake_up_worker(struct worker_pool *pool)
     786             : {
     787             :         struct worker *worker = first_idle_worker(pool);
     788             : 
     789       42747 :         if (likely(worker))
     790       42746 :                 wake_up_process(worker->task);
     791       42747 : }
     792             : 
     793             : /**
     794             :  * wq_worker_waking_up - a worker is waking up
     795             :  * @task: task waking up
     796             :  * @cpu: CPU @task is waking up to
     797             :  *
     798             :  * This function is called during try_to_wake_up() when a worker is
     799             :  * being awoken.
     800             :  *
     801             :  * CONTEXT:
     802             :  * spin_lock_irq(rq->lock)
     803             :  */
     804       42469 : void wq_worker_waking_up(struct task_struct *task, int cpu)
     805             : {
     806       42469 :         struct worker *worker = kthread_data(task);
     807             : 
     808       42469 :         if (!(worker->flags & WORKER_NOT_RUNNING)) {
     809             :                 WARN_ON_ONCE(worker->pool->cpu != cpu);
     810         111 :                 atomic_inc(&worker->pool->nr_running);
     811             :         }
     812       42469 : }
     813             : 
     814             : /**
     815             :  * wq_worker_sleeping - a worker is going to sleep
     816             :  * @task: task going to sleep
     817             :  * @cpu: CPU in question, must be the current CPU number
     818             :  *
     819             :  * This function is called during schedule() when a busy worker is
     820             :  * going to sleep.  Worker on the same cpu can be woken up by
     821             :  * returning pointer to its task.
     822             :  *
     823             :  * CONTEXT:
     824             :  * spin_lock_irq(rq->lock)
     825             :  *
     826             :  * Return:
     827             :  * Worker task on @cpu to wake up, %NULL if none.
     828             :  */
     829       42489 : struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
     830             : {
     831       42489 :         struct worker *worker = kthread_data(task), *to_wakeup = NULL;
     832             :         struct worker_pool *pool;
     833             : 
     834             :         /*
     835             :          * Rescuers, which may not have all the fields set up like normal
     836             :          * workers, also reach here, let's not access anything before
     837             :          * checking NOT_RUNNING.
     838             :          */
     839       42489 :         if (worker->flags & WORKER_NOT_RUNNING)
     840             :                 return NULL;
     841             : 
     842         111 :         pool = worker->pool;
     843             : 
     844             :         /* this can only happen on the local cpu */
     845         111 :         if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
     846             :                 return NULL;
     847             : 
     848             :         /*
     849             :          * The counterpart of the following dec_and_test, implied mb,
     850             :          * worklist not empty test sequence is in insert_work().
     851             :          * Please read comment there.
     852             :          *
     853             :          * NOT_RUNNING is clear.  This means that we're bound to and
     854             :          * running on the local cpu w/ rq lock held and preemption
     855             :          * disabled, which in turn means that none else could be
     856             :          * manipulating idle_list, so dereferencing idle_list without pool
     857             :          * lock is safe.
     858             :          */
     859         333 :         if (atomic_dec_and_test(&pool->nr_running) &&
     860         111 :             !list_empty(&pool->worklist))
     861             :                 to_wakeup = first_idle_worker(pool);
     862         111 :         return to_wakeup ? to_wakeup->task : NULL;
     863             : }
     864             : 
     865             : /**
     866             :  * worker_set_flags - set worker flags and adjust nr_running accordingly
     867             :  * @worker: self
     868             :  * @flags: flags to set
     869             :  *
     870             :  * Set @flags in @worker->flags and adjust nr_running accordingly.
     871             :  *
     872             :  * CONTEXT:
     873             :  * spin_lock_irq(pool->lock)
     874             :  */
     875             : static inline void worker_set_flags(struct worker *worker, unsigned int flags)
     876             : {
     877             :         struct worker_pool *pool = worker->pool;
     878             : 
     879             :         WARN_ON_ONCE(worker->task != current);
     880             : 
     881             :         /* If transitioning into NOT_RUNNING, adjust nr_running. */
     882       42243 :         if ((flags & WORKER_NOT_RUNNING) &&
     883       42243 :             !(worker->flags & WORKER_NOT_RUNNING)) {
     884       39484 :                 atomic_dec(&pool->nr_running);
     885             :         }
     886             : 
     887       42243 :         worker->flags |= flags;
     888             : }
     889             : 
     890             : /**
     891             :  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
     892             :  * @worker: self
     893             :  * @flags: flags to clear
     894             :  *
     895             :  * Clear @flags in @worker->flags and adjust nr_running accordingly.
     896             :  *
     897             :  * CONTEXT:
     898             :  * spin_lock_irq(pool->lock)
     899             :  */
     900             : static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
     901             : {
     902             :         struct worker_pool *pool = worker->pool;
     903       42243 :         unsigned int oflags = worker->flags;
     904             : 
     905             :         WARN_ON_ONCE(worker->task != current);
     906             : 
     907       84527 :         worker->flags &= ~flags;
     908             : 
     909             :         /*
     910             :          * If transitioning out of NOT_RUNNING, increment nr_running.  Note
     911             :          * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
     912             :          * of multiple flags, not a single flag.
     913             :          */
     914       42243 :         if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
     915       42243 :                 if (!(worker->flags & WORKER_NOT_RUNNING))
     916       39484 :                         atomic_inc(&pool->nr_running);
     917             : }
     918             : 
     919             : /**
     920             :  * find_worker_executing_work - find worker which is executing a work
     921             :  * @pool: pool of interest
     922             :  * @work: work to find worker for
     923             :  *
     924             :  * Find a worker which is executing @work on @pool by searching
     925             :  * @pool->busy_hash which is keyed by the address of @work.  For a worker
     926             :  * to match, its current execution should match the address of @work and
     927             :  * its work function.  This is to avoid unwanted dependency between
     928             :  * unrelated work executions through a work item being recycled while still
     929             :  * being executed.
     930             :  *
     931             :  * This is a bit tricky.  A work item may be freed once its execution
     932             :  * starts and nothing prevents the freed area from being recycled for
     933             :  * another work item.  If the same work item address ends up being reused
     934             :  * before the original execution finishes, workqueue will identify the
     935             :  * recycled work item as currently executing and make it wait until the
     936             :  * current execution finishes, introducing an unwanted dependency.
     937             :  *
     938             :  * This function checks the work item address and work function to avoid
     939             :  * false positives.  Note that this isn't complete as one may construct a
     940             :  * work function which can introduce dependency onto itself through a
     941             :  * recycled work item.  Well, if somebody wants to shoot oneself in the
     942             :  * foot that badly, there's only so much we can do, and if such deadlock
     943             :  * actually occurs, it should be easy to locate the culprit work function.
     944             :  *
     945             :  * CONTEXT:
     946             :  * spin_lock_irq(pool->lock).
     947             :  *
     948             :  * Return:
     949             :  * Pointer to worker which is executing @work if found, %NULL
     950             :  * otherwise.
     951             :  */
     952       42832 : static struct worker *find_worker_executing_work(struct worker_pool *pool,
     953             :                                                  struct work_struct *work)
     954             : {
     955             :         struct worker *worker;
     956             : 
     957       85664 :         hash_for_each_possible(pool->busy_hash, worker, hentry,
     958             :                                (unsigned long)work)
     959           6 :                 if (worker->current_work == work &&
     960           3 :                     worker->current_func == work->func)
     961             :                         return worker;
     962             : 
     963             :         return NULL;
     964             : }
     965             : 
     966             : /**
     967             :  * move_linked_works - move linked works to a list
     968             :  * @work: start of series of works to be scheduled
     969             :  * @head: target list to append @work to
     970             :  * @nextp: out paramter for nested worklist walking
     971             :  *
     972             :  * Schedule linked works starting from @work to @head.  Work series to
     973             :  * be scheduled starts at @work and includes any consecutive work with
     974             :  * WORK_STRUCT_LINKED set in its predecessor.
     975             :  *
     976             :  * If @nextp is not NULL, it's updated to point to the next work of
     977             :  * the last scheduled work.  This allows move_linked_works() to be
     978             :  * nested inside outer list_for_each_entry_safe().
     979             :  *
     980             :  * CONTEXT:
     981             :  * spin_lock_irq(pool->lock).
     982             :  */
     983          12 : static void move_linked_works(struct work_struct *work, struct list_head *head,
     984             :                               struct work_struct **nextp)
     985             : {
     986             :         struct work_struct *n;
     987             : 
     988             :         /*
     989             :          * Linked worklist will always end before the end of the list,
     990             :          * use NULL for list head.
     991             :          */
     992          21 :         list_for_each_entry_safe_from(work, n, NULL, entry) {
     993             :                 list_move_tail(&work->entry, head);
     994          21 :                 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
     995             :                         break;
     996             :         }
     997             : 
     998             :         /*
     999             :          * If we're already inside safe list traversal and have moved
    1000             :          * multiple works to the scheduled queue, the next position
    1001             :          * needs to be updated.
    1002             :          */
    1003          12 :         if (nextp)
    1004           0 :                 *nextp = n;
    1005          12 : }
    1006             : 
    1007             : /**
    1008             :  * get_pwq - get an extra reference on the specified pool_workqueue
    1009             :  * @pwq: pool_workqueue to get
    1010             :  *
    1011             :  * Obtain an extra reference on @pwq.  The caller should guarantee that
    1012             :  * @pwq has positive refcnt and be holding the matching pool->lock.
    1013             :  */
    1014             : static void get_pwq(struct pool_workqueue *pwq)
    1015             : {
    1016             :         lockdep_assert_held(&pwq->pool->lock);
    1017             :         WARN_ON_ONCE(pwq->refcnt <= 0);
    1018       42754 :         pwq->refcnt++;
    1019             : }
    1020             : 
    1021             : /**
    1022             :  * put_pwq - put a pool_workqueue reference
    1023             :  * @pwq: pool_workqueue to put
    1024             :  *
    1025             :  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
    1026             :  * destruction.  The caller should be holding the matching pool->lock.
    1027             :  */
    1028       42754 : static void put_pwq(struct pool_workqueue *pwq)
    1029             : {
    1030             :         lockdep_assert_held(&pwq->pool->lock);
    1031       42754 :         if (likely(--pwq->refcnt))
    1032             :                 return;
    1033           0 :         if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
    1034             :                 return;
    1035             :         /*
    1036             :          * @pwq can't be released under pool->lock, bounce to
    1037             :          * pwq_unbound_release_workfn().  This never recurses on the same
    1038             :          * pool->lock as this path is taken only for unbound workqueues and
    1039             :          * the release work item is scheduled on a per-cpu workqueue.  To
    1040             :          * avoid lockdep warning, unbound pool->locks are given lockdep
    1041             :          * subclass of 1 in get_unbound_pool().
    1042             :          */
    1043           0 :         schedule_work(&pwq->unbound_release_work);
    1044             : }
    1045             : 
    1046             : /**
    1047             :  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
    1048             :  * @pwq: pool_workqueue to put (can be %NULL)
    1049             :  *
    1050             :  * put_pwq() with locking.  This function also allows %NULL @pwq.
    1051             :  */
    1052          26 : static void put_pwq_unlocked(struct pool_workqueue *pwq)
    1053             : {
    1054          26 :         if (pwq) {
    1055             :                 /*
    1056             :                  * As both pwqs and pools are sched-RCU protected, the
    1057             :                  * following lock operations are safe.
    1058             :                  */
    1059             :                 spin_lock_irq(&pwq->pool->lock);
    1060           0 :                 put_pwq(pwq);
    1061             :                 spin_unlock_irq(&pwq->pool->lock);
    1062             :         }
    1063          26 : }
    1064             : 
    1065           0 : static void pwq_activate_delayed_work(struct work_struct *work)
    1066             : {
    1067             :         struct pool_workqueue *pwq = get_work_pwq(work);
    1068             : 
    1069             :         trace_workqueue_activate_work(work);
    1070           0 :         move_linked_works(work, &pwq->pool->worklist, NULL);
    1071             :         __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
    1072           0 :         pwq->nr_active++;
    1073           0 : }
    1074             : 
    1075             : static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
    1076             : {
    1077           0 :         struct work_struct *work = list_first_entry(&pwq->delayed_works,
    1078             :                                                     struct work_struct, entry);
    1079             : 
    1080           0 :         pwq_activate_delayed_work(work);
    1081             : }
    1082             : 
    1083             : /**
    1084             :  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
    1085             :  * @pwq: pwq of interest
    1086             :  * @color: color of work which left the queue
    1087             :  *
    1088             :  * A work either has completed or is removed from pending queue,
    1089             :  * decrement nr_in_flight of its pwq and handle workqueue flushing.
    1090             :  *
    1091             :  * CONTEXT:
    1092             :  * spin_lock_irq(pool->lock).
    1093             :  */
    1094       42754 : static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
    1095             : {
    1096             :         /* uncolored work items don't participate in flushing or nr_active */
    1097       42754 :         if (color == WORK_NO_COLOR)
    1098             :                 goto out_put;
    1099             : 
    1100       42745 :         pwq->nr_in_flight[color]--;
    1101             : 
    1102       42745 :         pwq->nr_active--;
    1103       85490 :         if (!list_empty(&pwq->delayed_works)) {
    1104             :                 /* one down, submit a delayed one */
    1105           0 :                 if (pwq->nr_active < pwq->max_active)
    1106             :                         pwq_activate_first_delayed(pwq);
    1107             :         }
    1108             : 
    1109             :         /* is flush in progress and are we at the flushing tip? */
    1110       42745 :         if (likely(pwq->flush_color != color))
    1111             :                 goto out_put;
    1112             : 
    1113             :         /* are there still in-flight works? */
    1114           1 :         if (pwq->nr_in_flight[color])
    1115             :                 goto out_put;
    1116             : 
    1117             :         /* this pwq is done, clear flush_color */
    1118           1 :         pwq->flush_color = -1;
    1119             : 
    1120             :         /*
    1121             :          * If this was the last pwq, wake up the first flusher.  It
    1122             :          * will handle the rest.
    1123             :          */
    1124           2 :         if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
    1125           1 :                 complete(&pwq->wq->first_flusher->done);
    1126             : out_put:
    1127       42754 :         put_pwq(pwq);
    1128       42754 : }
    1129             : 
    1130             : /**
    1131             :  * try_to_grab_pending - steal work item from worklist and disable irq
    1132             :  * @work: work item to steal
    1133             :  * @is_dwork: @work is a delayed_work
    1134             :  * @flags: place to store irq state
    1135             :  *
    1136             :  * Try to grab PENDING bit of @work.  This function can handle @work in any
    1137             :  * stable state - idle, on timer or on worklist.
    1138             :  *
    1139             :  * Return:
    1140             :  *  1           if @work was pending and we successfully stole PENDING
    1141             :  *  0           if @work was idle and we claimed PENDING
    1142             :  *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
    1143             :  *  -ENOENT     if someone else is canceling @work, this state may persist
    1144             :  *              for arbitrarily long
    1145             :  *
    1146             :  * Note:
    1147             :  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
    1148             :  * interrupted while holding PENDING and @work off queue, irq must be
    1149             :  * disabled on entry.  This, combined with delayed_work->timer being
    1150             :  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
    1151             :  *
    1152             :  * On successful return, >= 0, irq is disabled and the caller is
    1153             :  * responsible for releasing it using local_irq_restore(*@flags).
    1154             :  *
    1155             :  * This function is safe to call from any context including IRQ handler.
    1156             :  */
    1157        2204 : static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
    1158             :                                unsigned long *flags)
    1159             : {
    1160             :         struct worker_pool *pool;
    1161             :         struct pool_workqueue *pwq;
    1162             : 
    1163        2204 :         local_irq_save(*flags);
    1164             : 
    1165             :         /* try to steal the timer if it exists */
    1166        2204 :         if (is_dwork) {
    1167             :                 struct delayed_work *dwork = to_delayed_work(work);
    1168             : 
    1169             :                 /*
    1170             :                  * dwork->timer is irqsafe.  If del_timer() fails, it's
    1171             :                  * guaranteed that the timer is not queued anywhere and not
    1172             :                  * running on the local CPU.
    1173             :                  */
    1174         811 :                 if (likely(del_timer(&dwork->timer)))
    1175             :                         return 1;
    1176             :         }
    1177             : 
    1178             :         /* try to claim PENDING the normal way */
    1179        2201 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
    1180             :                 return 0;
    1181             : 
    1182             :         /*
    1183             :          * The queueing is in progress, or it is already queued. Try to
    1184             :          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
    1185             :          */
    1186           0 :         pool = get_work_pool(work);
    1187           0 :         if (!pool)
    1188             :                 goto fail;
    1189             : 
    1190             :         spin_lock(&pool->lock);
    1191             :         /*
    1192             :          * work->data is guaranteed to point to pwq only while the work
    1193             :          * item is queued on pwq->wq, and both updating work->data to point
    1194             :          * to pwq on queueing and to pool on dequeueing are done under
    1195             :          * pwq->pool->lock.  This in turn guarantees that, if work->data
    1196             :          * points to pwq which is associated with a locked pool, the work
    1197             :          * item is currently queued on that pool.
    1198             :          */
    1199             :         pwq = get_work_pwq(work);
    1200           0 :         if (pwq && pwq->pool == pool) {
    1201             :                 debug_work_deactivate(work);
    1202             : 
    1203             :                 /*
    1204             :                  * A delayed work item cannot be grabbed directly because
    1205             :                  * it might have linked NO_COLOR work items which, if left
    1206             :                  * on the delayed_list, will confuse pwq->nr_active
    1207             :                  * management later on and cause stall.  Make sure the work
    1208             :                  * item is activated before grabbing.
    1209             :                  */
    1210           0 :                 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
    1211           0 :                         pwq_activate_delayed_work(work);
    1212             : 
    1213           0 :                 list_del_init(&work->entry);
    1214           0 :                 pwq_dec_nr_in_flight(pwq, get_work_color(work));
    1215             : 
    1216             :                 /* work->data points to pwq iff queued, point to pool */
    1217           0 :                 set_work_pool_and_keep_pending(work, pool->id);
    1218             : 
    1219             :                 spin_unlock(&pool->lock);
    1220             :                 return 1;
    1221             :         }
    1222             :         spin_unlock(&pool->lock);
    1223             : fail:
    1224           0 :         local_irq_restore(*flags);
    1225           0 :         if (work_is_canceling(work))
    1226             :                 return -ENOENT;
    1227           0 :         cpu_relax();
    1228           0 :         return -EAGAIN;
    1229             : }
    1230             : 
    1231             : /**
    1232             :  * insert_work - insert a work into a pool
    1233             :  * @pwq: pwq @work belongs to
    1234             :  * @work: work to insert
    1235             :  * @head: insertion point
    1236             :  * @extra_flags: extra WORK_STRUCT_* flags to set
    1237             :  *
    1238             :  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
    1239             :  * work_struct flags.
    1240             :  *
    1241             :  * CONTEXT:
    1242             :  * spin_lock_irq(pool->lock).
    1243             :  */
    1244       42754 : static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
    1245             :                         struct list_head *head, unsigned int extra_flags)
    1246             : {
    1247       42754 :         struct worker_pool *pool = pwq->pool;
    1248             : 
    1249             :         /* we own @work, set data and link */
    1250             :         set_work_pwq(work, pwq, extra_flags);
    1251       42754 :         list_add_tail(&work->entry, head);
    1252             :         get_pwq(pwq);
    1253             : 
    1254             :         /*
    1255             :          * Ensure either wq_worker_sleeping() sees the above
    1256             :          * list_add_tail() or we see zero nr_running to avoid workers lying
    1257             :          * around lazily while there are works to be processed.
    1258             :          */
    1259       42754 :         smp_mb();
    1260             : 
    1261       42754 :         if (__need_more_worker(pool))
    1262       42711 :                 wake_up_worker(pool);
    1263       42754 : }
    1264             : 
    1265             : /*
    1266             :  * Test whether @work is being queued from another work executing on the
    1267             :  * same workqueue.
    1268             :  */
    1269           0 : static bool is_chained_work(struct workqueue_struct *wq)
    1270             : {
    1271             :         struct worker *worker;
    1272             : 
    1273             :         worker = current_wq_worker();
    1274             :         /*
    1275             :          * Return %true iff I'm a worker execuing a work item on @wq.  If
    1276             :          * I'm @worker, it's safe to dereference it without locking.
    1277             :          */
    1278           0 :         return worker && worker->current_pwq->wq == wq;
    1279             : }
    1280             : 
    1281       42745 : static void __queue_work(int cpu, struct workqueue_struct *wq,
    1282             :                          struct work_struct *work)
    1283             : {
    1284             :         struct pool_workqueue *pwq;
    1285             :         struct worker_pool *last_pool;
    1286             :         struct list_head *worklist;
    1287             :         unsigned int work_flags;
    1288             :         unsigned int req_cpu = cpu;
    1289             : 
    1290             :         /*
    1291             :          * While a work item is PENDING && off queue, a task trying to
    1292             :          * steal the PENDING will busy-loop waiting for it to either get
    1293             :          * queued or lose PENDING.  Grabbing PENDING and queueing should
    1294             :          * happen with IRQ disabled.
    1295             :          */
    1296             :         WARN_ON_ONCE(!irqs_disabled());
    1297             : 
    1298             :         debug_work_activate(work);
    1299             : 
    1300             :         /* if draining, only works from the same workqueue are allowed */
    1301       42745 :         if (unlikely(wq->flags & __WQ_DRAINING) &&
    1302           0 :             WARN_ON_ONCE(!is_chained_work(wq)))
    1303             :                 return;
    1304             : retry:
    1305             :         if (req_cpu == WORK_CPU_UNBOUND)
    1306             :                 cpu = raw_smp_processor_id();
    1307             : 
    1308             :         /* pwq which will be used unless @work is executing elsewhere */
    1309       42745 :         if (!(wq->flags & WQ_UNBOUND))
    1310       39982 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    1311             :         else
    1312             :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    1313             : 
    1314             :         /*
    1315             :          * If @work was previously on a different pool, it might still be
    1316             :          * running there, in which case the work needs to be queued on that
    1317             :          * pool to guarantee non-reentrancy.
    1318             :          */
    1319       42745 :         last_pool = get_work_pool(work);
    1320       42745 :         if (last_pool && last_pool != pwq->pool) {
    1321             :                 struct worker *worker;
    1322             : 
    1323             :                 spin_lock(&last_pool->lock);
    1324             : 
    1325           2 :                 worker = find_worker_executing_work(last_pool, work);
    1326             : 
    1327           2 :                 if (worker && worker->current_pwq->wq == wq) {
    1328             :                         pwq = worker->current_pwq;
    1329             :                 } else {
    1330             :                         /* meh... not running there, queue here */
    1331             :                         spin_unlock(&last_pool->lock);
    1332             :                         spin_lock(&pwq->pool->lock);
    1333             :                 }
    1334             :         } else {
    1335             :                 spin_lock(&pwq->pool->lock);
    1336             :         }
    1337             : 
    1338             :         /*
    1339             :          * pwq is determined and locked.  For unbound pools, we could have
    1340             :          * raced with pwq release and it could already be dead.  If its
    1341             :          * refcnt is zero, repeat pwq selection.  Note that pwqs never die
    1342             :          * without another pwq replacing it in the numa_pwq_tbl or while
    1343             :          * work items are executing on it, so the retrying is guaranteed to
    1344             :          * make forward-progress.
    1345             :          */
    1346       42745 :         if (unlikely(!pwq->refcnt)) {
    1347           0 :                 if (wq->flags & WQ_UNBOUND) {
    1348             :                         spin_unlock(&pwq->pool->lock);
    1349           0 :                         cpu_relax();
    1350             :                         goto retry;
    1351             :                 }
    1352             :                 /* oops */
    1353             :                 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
    1354             :                           wq->name, cpu);
    1355             :         }
    1356             : 
    1357             :         /* pwq determined, queue */
    1358             :         trace_workqueue_queue_work(req_cpu, pwq, work);
    1359             : 
    1360       85490 :         if (WARN_ON(!list_empty(&work->entry))) {
    1361             :                 spin_unlock(&pwq->pool->lock);
    1362             :                 return;
    1363             :         }
    1364             : 
    1365       42745 :         pwq->nr_in_flight[pwq->work_color]++;
    1366             :         work_flags = work_color_to_flags(pwq->work_color);
    1367             : 
    1368       42745 :         if (likely(pwq->nr_active < pwq->max_active)) {
    1369             :                 trace_workqueue_activate_work(work);
    1370       42745 :                 pwq->nr_active++;
    1371       42745 :                 worklist = &pwq->pool->worklist;
    1372             :         } else {
    1373           0 :                 work_flags |= WORK_STRUCT_DELAYED;
    1374           0 :                 worklist = &pwq->delayed_works;
    1375             :         }
    1376             : 
    1377       42745 :         insert_work(pwq, work, worklist, work_flags);
    1378             : 
    1379             :         spin_unlock(&pwq->pool->lock);
    1380             : }
    1381             : 
    1382             : /**
    1383             :  * queue_work_on - queue work on specific cpu
    1384             :  * @cpu: CPU number to execute work on
    1385             :  * @wq: workqueue to use
    1386             :  * @work: work to queue
    1387             :  *
    1388             :  * We queue the work to a specific CPU, the caller must ensure it
    1389             :  * can't go away.
    1390             :  *
    1391             :  * Return: %false if @work was already on a queue, %true otherwise.
    1392             :  */
    1393       49149 : bool queue_work_on(int cpu, struct workqueue_struct *wq,
    1394             :                    struct work_struct *work)
    1395             : {
    1396             :         bool ret = false;
    1397             :         unsigned long flags;
    1398             : 
    1399             :         local_irq_save(flags);
    1400             : 
    1401       49149 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1402       38902 :                 __queue_work(cpu, wq, work);
    1403             :                 ret = true;
    1404             :         }
    1405             : 
    1406       49149 :         local_irq_restore(flags);
    1407       49149 :         return ret;
    1408             : }
    1409             : EXPORT_SYMBOL(queue_work_on);
    1410             : 
    1411        3806 : void delayed_work_timer_fn(unsigned long __data)
    1412             : {
    1413        3806 :         struct delayed_work *dwork = (struct delayed_work *)__data;
    1414             : 
    1415             :         /* should have been called from irqsafe timer with irq already off */
    1416        3806 :         __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    1417        3806 : }
    1418             : EXPORT_SYMBOL(delayed_work_timer_fn);
    1419             : 
    1420        3853 : static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
    1421             :                                 struct delayed_work *dwork, unsigned long delay)
    1422             : {
    1423        3853 :         struct timer_list *timer = &dwork->timer;
    1424             :         struct work_struct *work = &dwork->work;
    1425             : 
    1426             :         WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
    1427             :                      timer->data != (unsigned long)dwork);
    1428             :         WARN_ON_ONCE(timer_pending(timer));
    1429             :         WARN_ON_ONCE(!list_empty(&work->entry));
    1430             : 
    1431             :         /*
    1432             :          * If @delay is 0, queue @dwork->work immediately.  This is for
    1433             :          * both optimization and correctness.  The earliest @timer can
    1434             :          * expire is on the closest next tick and delayed_work users depend
    1435             :          * on that there's no such delay when @delay is 0.
    1436             :          */
    1437        3853 :         if (!delay) {
    1438          37 :                 __queue_work(cpu, wq, &dwork->work);
    1439        3890 :                 return;
    1440             :         }
    1441             : 
    1442             :         timer_stats_timer_set_start_info(&dwork->timer);
    1443             : 
    1444        3816 :         dwork->wq = wq;
    1445        3816 :         dwork->cpu = cpu;
    1446        3816 :         timer->expires = jiffies + delay;
    1447             : 
    1448        3816 :         if (unlikely(cpu != WORK_CPU_UNBOUND))
    1449         802 :                 add_timer_on(timer, cpu);
    1450             :         else
    1451        3014 :                 add_timer(timer);
    1452             : }
    1453             : 
    1454             : /**
    1455             :  * queue_delayed_work_on - queue work on specific CPU after delay
    1456             :  * @cpu: CPU number to execute work on
    1457             :  * @wq: workqueue to use
    1458             :  * @dwork: work to queue
    1459             :  * @delay: number of jiffies to wait before queueing
    1460             :  *
    1461             :  * Return: %false if @work was already on a queue, %true otherwise.  If
    1462             :  * @delay is zero and @dwork is idle, it will be scheduled for immediate
    1463             :  * execution.
    1464             :  */
    1465        3058 : bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1466             :                            struct delayed_work *dwork, unsigned long delay)
    1467             : {
    1468             :         struct work_struct *work = &dwork->work;
    1469             :         bool ret = false;
    1470             :         unsigned long flags;
    1471             : 
    1472             :         /* read the comment in __queue_work() */
    1473             :         local_irq_save(flags);
    1474             : 
    1475        3058 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1476        3050 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1477             :                 ret = true;
    1478             :         }
    1479             : 
    1480        3058 :         local_irq_restore(flags);
    1481        3058 :         return ret;
    1482             : }
    1483             : EXPORT_SYMBOL(queue_delayed_work_on);
    1484             : 
    1485             : /**
    1486             :  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
    1487             :  * @cpu: CPU number to execute work on
    1488             :  * @wq: workqueue to use
    1489             :  * @dwork: work to queue
    1490             :  * @delay: number of jiffies to wait before queueing
    1491             :  *
    1492             :  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
    1493             :  * modify @dwork's timer so that it expires after @delay.  If @delay is
    1494             :  * zero, @work is guaranteed to be scheduled immediately regardless of its
    1495             :  * current state.
    1496             :  *
    1497             :  * Return: %false if @dwork was idle and queued, %true if @dwork was
    1498             :  * pending and its timer was modified.
    1499             :  *
    1500             :  * This function is safe to call from any context including IRQ handler.
    1501             :  * See try_to_grab_pending() for details.
    1502             :  */
    1503         803 : bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1504             :                          struct delayed_work *dwork, unsigned long delay)
    1505             : {
    1506             :         unsigned long flags;
    1507             :         int ret;
    1508             : 
    1509             :         do {
    1510         803 :                 ret = try_to_grab_pending(&dwork->work, true, &flags);
    1511         803 :         } while (unlikely(ret == -EAGAIN));
    1512             : 
    1513         803 :         if (likely(ret >= 0)) {
    1514         803 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1515        1606 :                 local_irq_restore(flags);
    1516             :         }
    1517             : 
    1518             :         /* -ENOENT from try_to_grab_pending() becomes %true */
    1519         803 :         return ret;
    1520             : }
    1521             : EXPORT_SYMBOL_GPL(mod_delayed_work_on);
    1522             : 
    1523             : /**
    1524             :  * worker_enter_idle - enter idle state
    1525             :  * @worker: worker which is entering idle state
    1526             :  *
    1527             :  * @worker is entering idle state.  Update stats and idle timer if
    1528             :  * necessary.
    1529             :  *
    1530             :  * LOCKING:
    1531             :  * spin_lock_irq(pool->lock).
    1532             :  */
    1533       42295 : static void worker_enter_idle(struct worker *worker)
    1534             : {
    1535       42295 :         struct worker_pool *pool = worker->pool;
    1536             : 
    1537       84590 :         if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
    1538       84590 :             WARN_ON_ONCE(!list_empty(&worker->entry) &&
    1539             :                          (worker->hentry.next || worker->hentry.pprev)))
    1540       42295 :                 return;
    1541             : 
    1542             :         /* can't use worker_set_flags(), also called from create_worker() */
    1543       42295 :         worker->flags |= WORKER_IDLE;
    1544       42295 :         pool->nr_idle++;
    1545       42295 :         worker->last_active = jiffies;
    1546             : 
    1547             :         /* idle_list is LIFO */
    1548       42295 :         list_add(&worker->entry, &pool->idle_list);
    1549             : 
    1550       42295 :         if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
    1551           6 :                 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
    1552             : 
    1553             :         /*
    1554             :          * Sanity check nr_running.  Because wq_unbind_fn() releases
    1555             :          * pool->lock between setting %WORKER_UNBOUND and zapping
    1556             :          * nr_running, the warning may trigger spuriously.  Check iff
    1557             :          * unbind is not in progress.
    1558             :          */
    1559       42295 :         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
    1560             :                      pool->nr_workers == pool->nr_idle &&
    1561             :                      atomic_read(&pool->nr_running));
    1562             : }
    1563             : 
    1564             : /**
    1565             :  * worker_leave_idle - leave idle state
    1566             :  * @worker: worker which is leaving idle state
    1567             :  *
    1568             :  * @worker is leaving idle state.  Update stats.
    1569             :  *
    1570             :  * LOCKING:
    1571             :  * spin_lock_irq(pool->lock).
    1572             :  */
    1573       42284 : static void worker_leave_idle(struct worker *worker)
    1574             : {
    1575       42284 :         struct worker_pool *pool = worker->pool;
    1576             : 
    1577       42284 :         if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
    1578       42284 :                 return;
    1579             :         worker_clr_flags(worker, WORKER_IDLE);
    1580       42284 :         pool->nr_idle--;
    1581       42284 :         list_del_init(&worker->entry);
    1582             : }
    1583             : 
    1584          26 : static struct worker *alloc_worker(int node)
    1585             : {
    1586             :         struct worker *worker;
    1587             : 
    1588             :         worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
    1589          26 :         if (worker) {
    1590          26 :                 INIT_LIST_HEAD(&worker->entry);
    1591          26 :                 INIT_LIST_HEAD(&worker->scheduled);
    1592          26 :                 INIT_LIST_HEAD(&worker->node);
    1593             :                 /* on creation a worker is in !idle && prep state */
    1594          26 :                 worker->flags = WORKER_PREP;
    1595             :         }
    1596          26 :         return worker;
    1597             : }
    1598             : 
    1599             : /**
    1600             :  * worker_attach_to_pool() - attach a worker to a pool
    1601             :  * @worker: worker to be attached
    1602             :  * @pool: the target pool
    1603             :  *
    1604             :  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
    1605             :  * cpu-binding of @worker are kept coordinated with the pool across
    1606             :  * cpu-[un]hotplugs.
    1607             :  */
    1608          11 : static void worker_attach_to_pool(struct worker *worker,
    1609             :                                    struct worker_pool *pool)
    1610             : {
    1611          11 :         mutex_lock(&pool->attach_mutex);
    1612             : 
    1613             :         /*
    1614             :          * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
    1615             :          * online CPUs.  It'll be re-applied when any of the CPUs come up.
    1616             :          */
    1617          11 :         set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
    1618             : 
    1619             :         /*
    1620             :          * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
    1621             :          * stable across this function.  See the comments above the
    1622             :          * flag definition for details.
    1623             :          */
    1624          11 :         if (pool->flags & POOL_DISASSOCIATED)
    1625           6 :                 worker->flags |= WORKER_UNBOUND;
    1626             : 
    1627          11 :         list_add_tail(&worker->node, &pool->workers);
    1628             : 
    1629          11 :         mutex_unlock(&pool->attach_mutex);
    1630          11 : }
    1631             : 
    1632             : /**
    1633             :  * worker_detach_from_pool() - detach a worker from its pool
    1634             :  * @worker: worker which is attached to its pool
    1635             :  * @pool: the pool @worker is attached to
    1636             :  *
    1637             :  * Undo the attaching which had been done in worker_attach_to_pool().  The
    1638             :  * caller worker shouldn't access to the pool after detached except it has
    1639             :  * other reference to the pool.
    1640             :  */
    1641           6 : static void worker_detach_from_pool(struct worker *worker,
    1642             :                                     struct worker_pool *pool)
    1643             : {
    1644             :         struct completion *detach_completion = NULL;
    1645             : 
    1646           6 :         mutex_lock(&pool->attach_mutex);
    1647             :         list_del(&worker->node);
    1648          12 :         if (list_empty(&pool->workers))
    1649           0 :                 detach_completion = pool->detach_completion;
    1650           6 :         mutex_unlock(&pool->attach_mutex);
    1651             : 
    1652             :         /* clear leftover flags without pool->lock after it is detached */
    1653           6 :         worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
    1654             : 
    1655           6 :         if (detach_completion)
    1656           0 :                 complete(detach_completion);
    1657           6 : }
    1658             : 
    1659             : /**
    1660             :  * create_worker - create a new workqueue worker
    1661             :  * @pool: pool the new worker will belong to
    1662             :  *
    1663             :  * Create and start a new worker which is attached to @pool.
    1664             :  *
    1665             :  * CONTEXT:
    1666             :  * Might sleep.  Does GFP_KERNEL allocations.
    1667             :  *
    1668             :  * Return:
    1669             :  * Pointer to the newly created worker.
    1670             :  */
    1671          11 : static struct worker *create_worker(struct worker_pool *pool)
    1672             : {
    1673             :         struct worker *worker = NULL;
    1674             :         int id = -1;
    1675             :         char id_buf[16];
    1676             : 
    1677             :         /* ID is needed to determine kthread name */
    1678          11 :         id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
    1679          11 :         if (id < 0)
    1680             :                 goto fail;
    1681             : 
    1682          11 :         worker = alloc_worker(pool->node);
    1683          11 :         if (!worker)
    1684             :                 goto fail;
    1685             : 
    1686          11 :         worker->pool = pool;
    1687          11 :         worker->id = id;
    1688             : 
    1689          11 :         if (pool->cpu >= 0)
    1690           5 :                 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
    1691           5 :                          pool->attrs->nice < 0  ? "H" : "");
    1692             :         else
    1693           6 :                 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
    1694             : 
    1695          11 :         worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
    1696             :                                               "kworker/%s", id_buf);
    1697          11 :         if (IS_ERR(worker->task))
    1698             :                 goto fail;
    1699             : 
    1700          11 :         set_user_nice(worker->task, pool->attrs->nice);
    1701             : 
    1702             :         /* prevent userland from meddling with cpumask of workqueue workers */
    1703          11 :         worker->task->flags |= PF_NO_SETAFFINITY;
    1704             : 
    1705             :         /* successful, attach the worker to the pool */
    1706          11 :         worker_attach_to_pool(worker, pool);
    1707             : 
    1708             :         /* start the newly created worker */
    1709             :         spin_lock_irq(&pool->lock);
    1710          11 :         worker->pool->nr_workers++;
    1711          11 :         worker_enter_idle(worker);
    1712          11 :         wake_up_process(worker->task);
    1713             :         spin_unlock_irq(&pool->lock);
    1714             : 
    1715          11 :         return worker;
    1716             : 
    1717             : fail:
    1718           0 :         if (id >= 0)
    1719           0 :                 ida_simple_remove(&pool->worker_ida, id);
    1720           0 :         kfree(worker);
    1721           0 :         return NULL;
    1722             : }
    1723             : 
    1724             : /**
    1725             :  * destroy_worker - destroy a workqueue worker
    1726             :  * @worker: worker to be destroyed
    1727             :  *
    1728             :  * Destroy @worker and adjust @pool stats accordingly.  The worker should
    1729             :  * be idle.
    1730             :  *
    1731             :  * CONTEXT:
    1732             :  * spin_lock_irq(pool->lock).
    1733             :  */
    1734           6 : static void destroy_worker(struct worker *worker)
    1735             : {
    1736           6 :         struct worker_pool *pool = worker->pool;
    1737             : 
    1738             :         lockdep_assert_held(&pool->lock);
    1739             : 
    1740             :         /* sanity check frenzy */
    1741          12 :         if (WARN_ON(worker->current_work) ||
    1742          18 :             WARN_ON(!list_empty(&worker->scheduled)) ||
    1743           6 :             WARN_ON(!(worker->flags & WORKER_IDLE)))
    1744           6 :                 return;
    1745             : 
    1746           6 :         pool->nr_workers--;
    1747           6 :         pool->nr_idle--;
    1748             : 
    1749           6 :         list_del_init(&worker->entry);
    1750           6 :         worker->flags |= WORKER_DIE;
    1751           6 :         wake_up_process(worker->task);
    1752             : }
    1753             : 
    1754           6 : static void idle_worker_timeout(unsigned long __pool)
    1755             : {
    1756           6 :         struct worker_pool *pool = (void *)__pool;
    1757             : 
    1758             :         spin_lock_irq(&pool->lock);
    1759             : 
    1760          12 :         while (too_many_workers(pool)) {
    1761             :                 struct worker *worker;
    1762             :                 unsigned long expires;
    1763             : 
    1764             :                 /* idle_list is kept in LIFO order, check the last one */
    1765           6 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    1766           6 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    1767             : 
    1768           6 :                 if (time_before(jiffies, expires)) {
    1769           0 :                         mod_timer(&pool->idle_timer, expires);
    1770           0 :                         break;
    1771             :                 }
    1772             : 
    1773           6 :                 destroy_worker(worker);
    1774             :         }
    1775             : 
    1776             :         spin_unlock_irq(&pool->lock);
    1777           6 : }
    1778             : 
    1779           1 : static void send_mayday(struct work_struct *work)
    1780             : {
    1781             :         struct pool_workqueue *pwq = get_work_pwq(work);
    1782           1 :         struct workqueue_struct *wq = pwq->wq;
    1783             : 
    1784             :         lockdep_assert_held(&wq_mayday_lock);
    1785             : 
    1786           1 :         if (!wq->rescuer)
    1787           1 :                 return;
    1788             : 
    1789             :         /* mayday mayday mayday */
    1790           0 :         if (list_empty(&pwq->mayday_node)) {
    1791             :                 /*
    1792             :                  * If @pwq is for an unbound wq, its base ref may be put at
    1793             :                  * any time due to an attribute change.  Pin @pwq until the
    1794             :                  * rescuer is done with it.
    1795             :                  */
    1796             :                 get_pwq(pwq);
    1797           0 :                 list_add_tail(&pwq->mayday_node, &wq->maydays);
    1798           0 :                 wake_up_process(wq->rescuer->task);
    1799             :         }
    1800             : }
    1801             : 
    1802           1 : static void pool_mayday_timeout(unsigned long __pool)
    1803             : {
    1804           1 :         struct worker_pool *pool = (void *)__pool;
    1805             :         struct work_struct *work;
    1806             : 
    1807             :         spin_lock_irq(&pool->lock);
    1808             :         spin_lock(&wq_mayday_lock);         /* for wq->maydays */
    1809             : 
    1810           1 :         if (need_to_create_worker(pool)) {
    1811             :                 /*
    1812             :                  * We've been trying to create a new worker but
    1813             :                  * haven't been successful.  We might be hitting an
    1814             :                  * allocation deadlock.  Send distress signals to
    1815             :                  * rescuers.
    1816             :                  */
    1817           2 :                 list_for_each_entry(work, &pool->worklist, entry)
    1818           1 :                         send_mayday(work);
    1819             :         }
    1820             : 
    1821             :         spin_unlock(&wq_mayday_lock);
    1822             :         spin_unlock_irq(&pool->lock);
    1823             : 
    1824           1 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
    1825           1 : }
    1826             : 
    1827             : /**
    1828             :  * maybe_create_worker - create a new worker if necessary
    1829             :  * @pool: pool to create a new worker for
    1830             :  *
    1831             :  * Create a new worker for @pool if necessary.  @pool is guaranteed to
    1832             :  * have at least one idle worker on return from this function.  If
    1833             :  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
    1834             :  * sent to all rescuers with works scheduled on @pool to resolve
    1835             :  * possible allocation deadlock.
    1836             :  *
    1837             :  * On return, need_to_create_worker() is guaranteed to be %false and
    1838             :  * may_start_working() %true.
    1839             :  *
    1840             :  * LOCKING:
    1841             :  * spin_lock_irq(pool->lock) which may be released and regrabbed
    1842             :  * multiple times.  Does GFP_KERNEL allocations.  Called only from
    1843             :  * manager.
    1844             :  */
    1845           8 : static void maybe_create_worker(struct worker_pool *pool)
    1846             : __releases(&pool->lock)
    1847             : __acquires(&pool->lock)
    1848             : {
    1849             : restart:
    1850             :         spin_unlock_irq(&pool->lock);
    1851             : 
    1852             :         /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
    1853           8 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
    1854             : 
    1855             :         while (true) {
    1856           8 :                 if (create_worker(pool) || !need_to_create_worker(pool))
    1857             :                         break;
    1858             : 
    1859           0 :                 schedule_timeout_interruptible(CREATE_COOLDOWN);
    1860             : 
    1861           0 :                 if (!need_to_create_worker(pool))
    1862             :                         break;
    1863             :         }
    1864             : 
    1865           8 :         del_timer_sync(&pool->mayday_timer);
    1866             :         spin_lock_irq(&pool->lock);
    1867             :         /*
    1868             :          * This is necessary even after a new worker was just successfully
    1869             :          * created as @pool->lock was dropped and the new worker might have
    1870             :          * already become busy.
    1871             :          */
    1872           8 :         if (need_to_create_worker(pool))
    1873             :                 goto restart;
    1874           8 : }
    1875             : 
    1876             : /**
    1877             :  * manage_workers - manage worker pool
    1878             :  * @worker: self
    1879             :  *
    1880             :  * Assume the manager role and manage the worker pool @worker belongs
    1881             :  * to.  At any given time, there can be only zero or one manager per
    1882             :  * pool.  The exclusion is handled automatically by this function.
    1883             :  *
    1884             :  * The caller can safely start processing works on false return.  On
    1885             :  * true return, it's guaranteed that need_to_create_worker() is false
    1886             :  * and may_start_working() is true.
    1887             :  *
    1888             :  * CONTEXT:
    1889             :  * spin_lock_irq(pool->lock) which may be released and regrabbed
    1890             :  * multiple times.  Does GFP_KERNEL allocations.
    1891             :  *
    1892             :  * Return:
    1893             :  * %false if the pool doesn't need management and the caller can safely
    1894             :  * start processing works, %true if management function was performed and
    1895             :  * the conditions that the caller verified before calling the function may
    1896             :  * no longer be true.
    1897             :  */
    1898           8 : static bool manage_workers(struct worker *worker)
    1899             : {
    1900           8 :         struct worker_pool *pool = worker->pool;
    1901             : 
    1902             :         /*
    1903             :          * Anyone who successfully grabs manager_arb wins the arbitration
    1904             :          * and becomes the manager.  mutex_trylock() on pool->manager_arb
    1905             :          * failure while holding pool->lock reliably indicates that someone
    1906             :          * else is managing the pool and the worker which failed trylock
    1907             :          * can proceed to executing work items.  This means that anyone
    1908             :          * grabbing manager_arb is responsible for actually performing
    1909             :          * manager duties.  If manager_arb is grabbed and released without
    1910             :          * actual management, the pool may stall indefinitely.
    1911             :          */
    1912           8 :         if (!mutex_trylock(&pool->manager_arb))
    1913             :                 return false;
    1914             : 
    1915           8 :         maybe_create_worker(pool);
    1916             : 
    1917           8 :         mutex_unlock(&pool->manager_arb);
    1918             :         return true;
    1919             : }
    1920             : 
    1921             : /**
    1922             :  * process_one_work - process single work
    1923             :  * @worker: self
    1924             :  * @work: work to process
    1925             :  *
    1926             :  * Process @work.  This function contains all the logics necessary to
    1927             :  * process a single work including synchronization against and
    1928             :  * interaction with other workers on the same cpu, queueing and
    1929             :  * flushing.  As long as context requirement is met, any worker can
    1930             :  * call this function to process a work.
    1931             :  *
    1932             :  * CONTEXT:
    1933             :  * spin_lock_irq(pool->lock) which is released and regrabbed.
    1934             :  */
    1935       42757 : static void process_one_work(struct worker *worker, struct work_struct *work)
    1936             : __releases(&pool->lock)
    1937             : __acquires(&pool->lock)
    1938             : {
    1939             :         struct pool_workqueue *pwq = get_work_pwq(work);
    1940       42757 :         struct worker_pool *pool = worker->pool;
    1941       42757 :         bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
    1942             :         int work_color;
    1943             :         struct worker *collision;
    1944             : #ifdef CONFIG_LOCKDEP
    1945             :         /*
    1946             :          * It is permissible to free the struct work_struct from
    1947             :          * inside the function that is called from it, this we need to
    1948             :          * take into account for lockdep too.  To avoid bogus "held
    1949             :          * lock freed" warnings as well as problems when looking into
    1950             :          * work->lockdep_map, make a copy and use that here.
    1951             :          */
    1952             :         struct lockdep_map lockdep_map;
    1953             : 
    1954             :         lockdep_copy_map(&lockdep_map, &work->lockdep_map);
    1955             : #endif
    1956             :         /* ensure we're on the correct CPU */
    1957             :         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
    1958             :                      raw_smp_processor_id() != pool->cpu);
    1959             : 
    1960             :         /*
    1961             :          * A single work shouldn't be executed concurrently by
    1962             :          * multiple workers on a single cpu.  Check whether anyone is
    1963             :          * already processing the work.  If so, defer the work to the
    1964             :          * currently executing one.
    1965             :          */
    1966       42757 :         collision = find_worker_executing_work(pool, work);
    1967       42757 :         if (unlikely(collision)) {
    1968           3 :                 move_linked_works(work, &collision->scheduled, NULL);
    1969       42760 :                 return;
    1970             :         }
    1971             : 
    1972             :         /* claim and dequeue */
    1973             :         debug_work_deactivate(work);
    1974       85508 :         hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
    1975       42754 :         worker->current_work = work;
    1976       42754 :         worker->current_func = work->func;
    1977       42754 :         worker->current_pwq = pwq;
    1978             :         work_color = get_work_color(work);
    1979             : 
    1980       42754 :         list_del_init(&work->entry);
    1981             : 
    1982             :         /*
    1983             :          * CPU intensive works don't participate in concurrency management.
    1984             :          * They're the scheduler's responsibility.  This takes @worker out
    1985             :          * of concurrency management and the next code block will chain
    1986             :          * execution of the pending work items.
    1987             :          */
    1988       42754 :         if (unlikely(cpu_intensive))
    1989             :                 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
    1990             : 
    1991             :         /*
    1992             :          * Wake up another worker if necessary.  The condition is always
    1993             :          * false for normal per-cpu workers since nr_running would always
    1994             :          * be >= 1 at this point.  This is used to chain execution of the
    1995             :          * pending work items for WORKER_NOT_RUNNING workers such as the
    1996             :          * UNBOUND and CPU_INTENSIVE ones.
    1997             :          */
    1998       42754 :         if (need_more_worker(pool))
    1999           4 :                 wake_up_worker(pool);
    2000             : 
    2001             :         /*
    2002             :          * Record the last pool and clear PENDING which should be the last
    2003             :          * update to @work.  Also, do this inside @pool->lock so that
    2004             :          * PENDING and queued state changes happen together while IRQ is
    2005             :          * disabled.
    2006             :          */
    2007       42754 :         set_work_pool_and_clear_pending(work, pool->id);
    2008             : 
    2009             :         spin_unlock_irq(&pool->lock);
    2010             : 
    2011             :         lock_map_acquire_read(&pwq->wq->lockdep_map);
    2012             :         lock_map_acquire(&lockdep_map);
    2013             :         trace_workqueue_execute_start(work);
    2014       42754 :         worker->current_func(work);
    2015             :         /*
    2016             :          * While we must be careful to not use "work" after this, the trace
    2017             :          * point will only record its address.
    2018             :          */
    2019             :         trace_workqueue_execute_end(work);
    2020             :         lock_map_release(&lockdep_map);
    2021             :         lock_map_release(&pwq->wq->lockdep_map);
    2022             : 
    2023       42754 :         if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
    2024           0 :                 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
    2025             :                        "     last function: %pf\n",
    2026             :                        current->comm, preempt_count(), task_pid_nr(current),
    2027             :                        worker->current_func);
    2028             :                 debug_show_held_locks(current);
    2029           0 :                 dump_stack();
    2030             :         }
    2031             : 
    2032             :         /*
    2033             :          * The following prevents a kworker from hogging CPU on !PREEMPT
    2034             :          * kernels, where a requeueing work item waiting for something to
    2035             :          * happen could deadlock with stop_machine as such work item could
    2036             :          * indefinitely requeue itself while all other CPUs are trapped in
    2037             :          * stop_machine. At the same time, report a quiescent RCU state so
    2038             :          * the same condition doesn't freeze RCU.
    2039             :          */
    2040       42754 :         cond_resched_rcu_qs();
    2041             : 
    2042             :         spin_lock_irq(&pool->lock);
    2043             : 
    2044             :         /* clear cpu intensive status */
    2045       42754 :         if (unlikely(cpu_intensive))
    2046             :                 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
    2047             : 
    2048             :         /* we're done with it, release */
    2049             :         hash_del(&worker->hentry);
    2050       42754 :         worker->current_work = NULL;
    2051       42754 :         worker->current_func = NULL;
    2052       42754 :         worker->current_pwq = NULL;
    2053       42754 :         worker->desc_valid = false;
    2054       42754 :         pwq_dec_nr_in_flight(pwq, work_color);
    2055             : }
    2056             : 
    2057             : /**
    2058             :  * process_scheduled_works - process scheduled works
    2059             :  * @worker: self
    2060             :  *
    2061             :  * Process all scheduled works.  Please note that the scheduled list
    2062             :  * may change while processing a work, so this function repeatedly
    2063             :  * fetches a work from the top and executes it.
    2064             :  *
    2065             :  * CONTEXT:
    2066             :  * spin_lock_irq(pool->lock) which may be released and regrabbed
    2067             :  * multiple times.
    2068             :  */
    2069             : static void process_scheduled_works(struct worker *worker)
    2070             : {
    2071          33 :         while (!list_empty(&worker->scheduled)) {
    2072          21 :                 struct work_struct *work = list_first_entry(&worker->scheduled,
    2073             :                                                 struct work_struct, entry);
    2074          21 :                 process_one_work(worker, work);
    2075             :         }
    2076             : }
    2077             : 
    2078             : /**
    2079             :  * worker_thread - the worker thread function
    2080             :  * @__worker: self
    2081             :  *
    2082             :  * The worker thread function.  All workers belong to a worker_pool -
    2083             :  * either a per-cpu one or dynamic unbound one.  These workers process all
    2084             :  * work items regardless of their specific target workqueue.  The only
    2085             :  * exception is work items which belong to workqueues with a rescuer which
    2086             :  * will be explained in rescuer_thread().
    2087             :  *
    2088             :  * Return: 0
    2089             :  */
    2090          11 : static int worker_thread(void *__worker)
    2091             : {
    2092       84494 :         struct worker *worker = __worker;
    2093       42262 :         struct worker_pool *pool = worker->pool;
    2094             : 
    2095             :         /* tell the scheduler that this is a workqueue worker */
    2096          11 :         worker->task->flags |= PF_WQ_WORKER;
    2097             : woke_up:
    2098             :         spin_lock_irq(&pool->lock);
    2099             : 
    2100             :         /* am I supposed to die? */
    2101       42290 :         if (unlikely(worker->flags & WORKER_DIE)) {
    2102             :                 spin_unlock_irq(&pool->lock);
    2103             :                 WARN_ON_ONCE(!list_empty(&worker->entry));
    2104           6 :                 worker->task->flags &= ~PF_WQ_WORKER;
    2105             : 
    2106           6 :                 set_task_comm(worker->task, "kworker/dying");
    2107           6 :                 ida_simple_remove(&pool->worker_ida, worker->id);
    2108           6 :                 worker_detach_from_pool(worker, pool);
    2109           6 :                 kfree(worker);
    2110           6 :                 return 0;
    2111             :         }
    2112             : 
    2113       42284 :         worker_leave_idle(worker);
    2114             : recheck:
    2115             :         /* no more worker necessary? */
    2116       42292 :         if (!need_more_worker(pool))
    2117             :                 goto sleep;
    2118             : 
    2119             :         /* do we need to manage? */
    2120       42259 :         if (unlikely(!may_start_working(pool)) && manage_workers(worker))
    2121             :                 goto recheck;
    2122             : 
    2123             :         /*
    2124             :          * ->scheduled list can only be filled while a worker is
    2125             :          * preparing to process a work or actually processing it.
    2126             :          * Make sure nobody diddled with it while I was sleeping.
    2127             :          */
    2128             :         WARN_ON_ONCE(!list_empty(&worker->scheduled));
    2129             : 
    2130             :         /*
    2131             :          * Finish PREP stage.  We're guaranteed to have at least one idle
    2132             :          * worker or that someone else has already assumed the manager
    2133             :          * role.  This is where @worker starts participating in concurrency
    2134             :          * management if applicable and concurrency management is restored
    2135             :          * after being rebound.  See rebind_workers() for details.
    2136             :          */
    2137             :         worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
    2138             : 
    2139             :         do {
    2140       42745 :                 struct work_struct *work =
    2141       42745 :                         list_first_entry(&pool->worklist,
    2142             :                                          struct work_struct, entry);
    2143             : 
    2144       42745 :                 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
    2145             :                         /* optimization path, not strictly necessary */
    2146       42736 :                         process_one_work(worker, work);
    2147       85472 :                         if (unlikely(!list_empty(&worker->scheduled)))
    2148             :                                 process_scheduled_works(worker);
    2149             :                 } else {
    2150           9 :                         move_linked_works(work, &worker->scheduled, NULL);
    2151             :                         process_scheduled_works(worker);
    2152             :                 }
    2153       42745 :         } while (keep_working(pool));
    2154             : 
    2155             :         worker_set_flags(worker, WORKER_PREP);
    2156             : sleep:
    2157             :         /*
    2158             :          * pool->lock is held and there's no work to process and no need to
    2159             :          * manage, sleep.  Workers are woken up only while holding
    2160             :          * pool->lock or from local cpu, so setting the current state
    2161             :          * before releasing pool->lock is enough to prevent losing any
    2162             :          * event.
    2163             :          */
    2164       42284 :         worker_enter_idle(worker);
    2165       42284 :         __set_current_state(TASK_INTERRUPTIBLE);
    2166             :         spin_unlock_irq(&pool->lock);
    2167       42284 :         schedule();
    2168       42279 :         goto woke_up;
    2169             : }
    2170             : 
    2171             : /**
    2172             :  * rescuer_thread - the rescuer thread function
    2173             :  * @__rescuer: self
    2174             :  *
    2175             :  * Workqueue rescuer thread function.  There's one rescuer for each
    2176             :  * workqueue which has WQ_MEM_RECLAIM set.
    2177             :  *
    2178             :  * Regular work processing on a pool may block trying to create a new
    2179             :  * worker which uses GFP_KERNEL allocation which has slight chance of
    2180             :  * developing into deadlock if some works currently on the same queue
    2181             :  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
    2182             :  * the problem rescuer solves.
    2183             :  *
    2184             :  * When such condition is possible, the pool summons rescuers of all
    2185             :  * workqueues which have works queued on the pool and let them process
    2186             :  * those works so that forward progress can be guaranteed.
    2187             :  *
    2188             :  * This should happen rarely.
    2189             :  *
    2190             :  * Return: 0
    2191             :  */
    2192          15 : static int rescuer_thread(void *__rescuer)
    2193             : {
    2194             :         struct worker *rescuer = __rescuer;
    2195          15 :         struct workqueue_struct *wq = rescuer->rescue_wq;
    2196          15 :         struct list_head *scheduled = &rescuer->scheduled;
    2197             :         bool should_stop;
    2198             : 
    2199          15 :         set_user_nice(current, RESCUER_NICE_LEVEL);
    2200             : 
    2201             :         /*
    2202             :          * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
    2203             :          * doesn't participate in concurrency management.
    2204             :          */
    2205          15 :         rescuer->task->flags |= PF_WQ_WORKER;
    2206             : repeat:
    2207          15 :         set_current_state(TASK_INTERRUPTIBLE);
    2208             : 
    2209             :         /*
    2210             :          * By the time the rescuer is requested to stop, the workqueue
    2211             :          * shouldn't have any work pending, but @wq->maydays may still have
    2212             :          * pwq(s) queued.  This can happen by non-rescuer workers consuming
    2213             :          * all the work items before the rescuer got to them.  Go through
    2214             :          * @wq->maydays processing before acting on should_stop so that the
    2215             :          * list is always empty on exit.
    2216             :          */
    2217          15 :         should_stop = kthread_should_stop();
    2218             : 
    2219             :         /* see whether any pwq is asking for help */
    2220             :         spin_lock_irq(&wq_mayday_lock);
    2221             : 
    2222          30 :         while (!list_empty(&wq->maydays)) {
    2223           0 :                 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
    2224             :                                         struct pool_workqueue, mayday_node);
    2225           0 :                 struct worker_pool *pool = pwq->pool;
    2226             :                 struct work_struct *work, *n;
    2227             : 
    2228           0 :                 __set_current_state(TASK_RUNNING);
    2229           0 :                 list_del_init(&pwq->mayday_node);
    2230             : 
    2231             :                 spin_unlock_irq(&wq_mayday_lock);
    2232             : 
    2233           0 :                 worker_attach_to_pool(rescuer, pool);
    2234             : 
    2235             :                 spin_lock_irq(&pool->lock);
    2236           0 :                 rescuer->pool = pool;
    2237             : 
    2238             :                 /*
    2239             :                  * Slurp in all works issued via this workqueue and
    2240             :                  * process'em.
    2241             :                  */
    2242             :                 WARN_ON_ONCE(!list_empty(scheduled));
    2243           0 :                 list_for_each_entry_safe(work, n, &pool->worklist, entry)
    2244           0 :                         if (get_work_pwq(work) == pwq)
    2245           0 :                                 move_linked_works(work, scheduled, &n);
    2246             : 
    2247           0 :                 if (!list_empty(scheduled)) {
    2248             :                         process_scheduled_works(rescuer);
    2249             : 
    2250             :                         /*
    2251             :                          * The above execution of rescued work items could
    2252             :                          * have created more to rescue through
    2253             :                          * pwq_activate_first_delayed() or chained
    2254             :                          * queueing.  Let's put @pwq back on mayday list so
    2255             :                          * that such back-to-back work items, which may be
    2256             :                          * being used to relieve memory pressure, don't
    2257             :                          * incur MAYDAY_INTERVAL delay inbetween.
    2258             :                          */
    2259           0 :                         if (need_to_create_worker(pool)) {
    2260             :                                 spin_lock(&wq_mayday_lock);
    2261             :                                 get_pwq(pwq);
    2262             :                                 list_move_tail(&pwq->mayday_node, &wq->maydays);
    2263             :                                 spin_unlock(&wq_mayday_lock);
    2264             :                         }
    2265             :                 }
    2266             : 
    2267             :                 /*
    2268             :                  * Put the reference grabbed by send_mayday().  @pool won't
    2269             :                  * go away while we're still attached to it.
    2270             :                  */
    2271           0 :                 put_pwq(pwq);
    2272             : 
    2273             :                 /*
    2274             :                  * Leave this pool.  If need_more_worker() is %true, notify a
    2275             :                  * regular worker; otherwise, we end up with 0 concurrency
    2276             :                  * and stalling the execution.
    2277             :                  */
    2278           0 :                 if (need_more_worker(pool))
    2279           0 :                         wake_up_worker(pool);
    2280             : 
    2281           0 :                 rescuer->pool = NULL;
    2282             :                 spin_unlock_irq(&pool->lock);
    2283             : 
    2284           0 :                 worker_detach_from_pool(rescuer, pool);
    2285             : 
    2286             :                 spin_lock_irq(&wq_mayday_lock);
    2287             :         }
    2288             : 
    2289             :         spin_unlock_irq(&wq_mayday_lock);
    2290             : 
    2291          15 :         if (should_stop) {
    2292           0 :                 __set_current_state(TASK_RUNNING);
    2293           0 :                 rescuer->task->flags &= ~PF_WQ_WORKER;
    2294           0 :                 return 0;
    2295             :         }
    2296             : 
    2297             :         /* rescuers should never participate in concurrency management */
    2298             :         WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
    2299          15 :         schedule();
    2300           0 :         goto repeat;
    2301             : }
    2302             : 
    2303             : struct wq_barrier {
    2304             :         struct work_struct      work;
    2305             :         struct completion       done;
    2306             : };
    2307             : 
    2308           9 : static void wq_barrier_func(struct work_struct *work)
    2309             : {
    2310             :         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
    2311           9 :         complete(&barr->done);
    2312           9 : }
    2313             : 
    2314             : /**
    2315             :  * insert_wq_barrier - insert a barrier work
    2316             :  * @pwq: pwq to insert barrier into
    2317             :  * @barr: wq_barrier to insert
    2318             :  * @target: target work to attach @barr to
    2319             :  * @worker: worker currently executing @target, NULL if @target is not executing
    2320             :  *
    2321             :  * @barr is linked to @target such that @barr is completed only after
    2322             :  * @target finishes execution.  Please note that the ordering
    2323             :  * guarantee is observed only with respect to @target and on the local
    2324             :  * cpu.
    2325             :  *
    2326             :  * Currently, a queued barrier can't be canceled.  This is because
    2327             :  * try_to_grab_pending() can't determine whether the work to be
    2328             :  * grabbed is at the head of the queue and thus can't clear LINKED
    2329             :  * flag of the previous work while there must be a valid next work
    2330             :  * after a work with LINKED flag set.
    2331             :  *
    2332             :  * Note that when @worker is non-NULL, @target may be modified
    2333             :  * underneath us, so we can't reliably determine pwq from @target.
    2334             :  *
    2335             :  * CONTEXT:
    2336             :  * spin_lock_irq(pool->lock).
    2337             :  */
    2338           9 : static void insert_wq_barrier(struct pool_workqueue *pwq,
    2339             :                               struct wq_barrier *barr,
    2340             :                               struct work_struct *target, struct worker *worker)
    2341             : {
    2342             :         struct list_head *head;
    2343             :         unsigned int linked = 0;
    2344             : 
    2345             :         /*
    2346             :          * debugobject calls are safe here even with pool->lock locked
    2347             :          * as we know for sure that this will not trigger any of the
    2348             :          * checks and call back into the fixup functions where we
    2349             :          * might deadlock.
    2350             :          */
    2351          18 :         INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
    2352             :         __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
    2353             :         init_completion(&barr->done);
    2354             : 
    2355             :         /*
    2356             :          * If @target is currently being executed, schedule the
    2357             :          * barrier to the worker; otherwise, put it after @target.
    2358             :          */
    2359           9 :         if (worker)
    2360           0 :                 head = worker->scheduled.next;
    2361             :         else {
    2362             :                 unsigned long *bits = work_data_bits(target);
    2363             : 
    2364           9 :                 head = target->entry.next;
    2365             :                 /* there can already be other linked works, inherit and set */
    2366           9 :                 linked = *bits & WORK_STRUCT_LINKED;
    2367             :                 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
    2368             :         }
    2369             : 
    2370             :         debug_work_activate(&barr->work);
    2371           9 :         insert_work(pwq, &barr->work, head,
    2372             :                     work_color_to_flags(WORK_NO_COLOR) | linked);
    2373           9 : }
    2374             : 
    2375             : /**
    2376             :  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
    2377             :  * @wq: workqueue being flushed
    2378             :  * @flush_color: new flush color, < 0 for no-op
    2379             :  * @work_color: new work color, < 0 for no-op
    2380             :  *
    2381             :  * Prepare pwqs for workqueue flushing.
    2382             :  *
    2383             :  * If @flush_color is non-negative, flush_color on all pwqs should be
    2384             :  * -1.  If no pwq has in-flight commands at the specified color, all
    2385             :  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
    2386             :  * has in flight commands, its pwq->flush_color is set to
    2387             :  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
    2388             :  * wakeup logic is armed and %true is returned.
    2389             :  *
    2390             :  * The caller should have initialized @wq->first_flusher prior to
    2391             :  * calling this function with non-negative @flush_color.  If
    2392             :  * @flush_color is negative, no flush color update is done and %false
    2393             :  * is returned.
    2394             :  *
    2395             :  * If @work_color is non-negative, all pwqs should have the same
    2396             :  * work_color which is previous to @work_color and all will be
    2397             :  * advanced to @work_color.
    2398             :  *
    2399             :  * CONTEXT:
    2400             :  * mutex_lock(wq->mutex).
    2401             :  *
    2402             :  * Return:
    2403             :  * %true if @flush_color >= 0 and there's something to flush.  %false
    2404             :  * otherwise.
    2405             :  */
    2406           1 : static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
    2407             :                                       int flush_color, int work_color)
    2408             : {
    2409             :         bool wait = false;
    2410             :         struct pool_workqueue *pwq;
    2411             : 
    2412           1 :         if (flush_color >= 0) {
    2413           1 :                 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
    2414           1 :                 atomic_set(&wq->nr_pwqs_to_flush, 1);
    2415             :         }
    2416             : 
    2417           2 :         for_each_pwq(pwq, wq) {
    2418             :                 struct worker_pool *pool = pwq->pool;
    2419             : 
    2420             :                 spin_lock_irq(&pool->lock);
    2421             : 
    2422           1 :                 if (flush_color >= 0) {
    2423             :                         WARN_ON_ONCE(pwq->flush_color != -1);
    2424             : 
    2425           1 :                         if (pwq->nr_in_flight[flush_color]) {
    2426           1 :                                 pwq->flush_color = flush_color;
    2427           1 :                                 atomic_inc(&wq->nr_pwqs_to_flush);
    2428             :                                 wait = true;
    2429             :                         }
    2430             :                 }
    2431             : 
    2432           1 :                 if (work_color >= 0) {
    2433             :                         WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
    2434           1 :                         pwq->work_color = work_color;
    2435             :                 }
    2436             : 
    2437             :                 spin_unlock_irq(&pool->lock);
    2438             :         }
    2439             : 
    2440           2 :         if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
    2441           0 :                 complete(&wq->first_flusher->done);
    2442             : 
    2443           1 :         return wait;
    2444             : }
    2445             : 
    2446             : /**
    2447             :  * flush_workqueue - ensure that any scheduled work has run to completion.
    2448             :  * @wq: workqueue to flush
    2449             :  *
    2450             :  * This function sleeps until all work items which were queued on entry
    2451             :  * have finished execution, but it is not livelocked by new incoming ones.
    2452             :  */
    2453           1 : void flush_workqueue(struct workqueue_struct *wq)
    2454             : {
    2455           2 :         struct wq_flusher this_flusher = {
    2456             :                 .list = LIST_HEAD_INIT(this_flusher.list),
    2457             :                 .flush_color = -1,
    2458           1 :                 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
    2459             :         };
    2460             :         int next_color;
    2461             : 
    2462             :         lock_map_acquire(&wq->lockdep_map);
    2463             :         lock_map_release(&wq->lockdep_map);
    2464             : 
    2465           1 :         mutex_lock(&wq->mutex);
    2466             : 
    2467             :         /*
    2468             :          * Start-to-wait phase
    2469             :          */
    2470           1 :         next_color = work_next_color(wq->work_color);
    2471             : 
    2472           1 :         if (next_color != wq->flush_color) {
    2473             :                 /*
    2474             :                  * Color space is not full.  The current work_color
    2475             :                  * becomes our flush_color and work_color is advanced
    2476             :                  * by one.
    2477             :                  */
    2478             :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
    2479           1 :                 this_flusher.flush_color = wq->work_color;
    2480           1 :                 wq->work_color = next_color;
    2481             : 
    2482           1 :                 if (!wq->first_flusher) {
    2483             :                         /* no flush in progress, become the first flusher */
    2484             :                         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2485             : 
    2486           1 :                         wq->first_flusher = &this_flusher;
    2487             : 
    2488           1 :                         if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
    2489             :                                                        wq->work_color)) {
    2490             :                                 /* nothing to flush, done */
    2491           0 :                                 wq->flush_color = next_color;
    2492           0 :                                 wq->first_flusher = NULL;
    2493           0 :                                 goto out_unlock;
    2494             :                         }
    2495             :                 } else {
    2496             :                         /* wait in queue */
    2497             :                         WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
    2498           0 :                         list_add_tail(&this_flusher.list, &wq->flusher_queue);
    2499           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    2500             :                 }
    2501             :         } else {
    2502             :                 /*
    2503             :                  * Oops, color space is full, wait on overflow queue.
    2504             :                  * The next flush completion will assign us
    2505             :                  * flush_color and transfer to flusher_queue.
    2506             :                  */
    2507           0 :                 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
    2508             :         }
    2509             : 
    2510           1 :         mutex_unlock(&wq->mutex);
    2511             : 
    2512           1 :         wait_for_completion(&this_flusher.done);
    2513             : 
    2514             :         /*
    2515             :          * Wake-up-and-cascade phase
    2516             :          *
    2517             :          * First flushers are responsible for cascading flushes and
    2518             :          * handling overflow.  Non-first flushers can simply return.
    2519             :          */
    2520           1 :         if (wq->first_flusher != &this_flusher)
    2521           0 :                 return;
    2522             : 
    2523           1 :         mutex_lock(&wq->mutex);
    2524             : 
    2525             :         /* we might have raced, check again with mutex held */
    2526           1 :         if (wq->first_flusher != &this_flusher)
    2527             :                 goto out_unlock;
    2528             : 
    2529           1 :         wq->first_flusher = NULL;
    2530             : 
    2531             :         WARN_ON_ONCE(!list_empty(&this_flusher.list));
    2532             :         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2533             : 
    2534             :         while (true) {
    2535             :                 struct wq_flusher *next, *tmp;
    2536             : 
    2537             :                 /* complete all the flushers sharing the current flush color */
    2538           1 :                 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
    2539           0 :                         if (next->flush_color != wq->flush_color)
    2540             :                                 break;
    2541             :                         list_del_init(&next->list);
    2542           0 :                         complete(&next->done);
    2543             :                 }
    2544             : 
    2545           1 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
    2546             :                              wq->flush_color != work_next_color(wq->work_color));
    2547             : 
    2548             :                 /* this flush_color is finished, advance by one */
    2549           2 :                 wq->flush_color = work_next_color(wq->flush_color);
    2550             : 
    2551             :                 /* one color has been freed, handle overflow queue */
    2552           1 :                 if (!list_empty(&wq->flusher_overflow)) {
    2553             :                         /*
    2554             :                          * Assign the same color to all overflowed
    2555             :                          * flushers, advance work_color and append to
    2556             :                          * flusher_queue.  This is the start-to-wait
    2557             :                          * phase for these overflowed flushers.
    2558             :                          */
    2559           0 :                         list_for_each_entry(tmp, &wq->flusher_overflow, list)
    2560           0 :                                 tmp->flush_color = wq->work_color;
    2561             : 
    2562           0 :                         wq->work_color = work_next_color(wq->work_color);
    2563             : 
    2564             :                         list_splice_tail_init(&wq->flusher_overflow,
    2565             :                                               &wq->flusher_queue);
    2566           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    2567             :                 }
    2568             : 
    2569           1 :                 if (list_empty(&wq->flusher_queue)) {
    2570             :                         WARN_ON_ONCE(wq->flush_color != wq->work_color);
    2571             :                         break;
    2572             :                 }
    2573             : 
    2574             :                 /*
    2575             :                  * Need to flush more colors.  Make the next flusher
    2576             :                  * the new first flusher and arm pwqs.
    2577             :                  */
    2578             :                 WARN_ON_ONCE(wq->flush_color == wq->work_color);
    2579             :                 WARN_ON_ONCE(wq->flush_color != next->flush_color);
    2580             : 
    2581             :                 list_del_init(&next->list);
    2582           0 :                 wq->first_flusher = next;
    2583             : 
    2584           0 :                 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
    2585             :                         break;
    2586             : 
    2587             :                 /*
    2588             :                  * Meh... this color is already done, clear first
    2589             :                  * flusher and repeat cascading.
    2590             :                  */
    2591           0 :                 wq->first_flusher = NULL;
    2592           0 :         }
    2593             : 
    2594             : out_unlock:
    2595           1 :         mutex_unlock(&wq->mutex);
    2596             : }
    2597             : EXPORT_SYMBOL_GPL(flush_workqueue);
    2598             : 
    2599             : /**
    2600             :  * drain_workqueue - drain a workqueue
    2601             :  * @wq: workqueue to drain
    2602             :  *
    2603             :  * Wait until the workqueue becomes empty.  While draining is in progress,
    2604             :  * only chain queueing is allowed.  IOW, only currently pending or running
    2605             :  * work items on @wq can queue further work items on it.  @wq is flushed
    2606             :  * repeatedly until it becomes empty.  The number of flushing is detemined
    2607             :  * by the depth of chaining and should be relatively short.  Whine if it
    2608             :  * takes too long.
    2609             :  */
    2610           0 : void drain_workqueue(struct workqueue_struct *wq)
    2611             : {
    2612             :         unsigned int flush_cnt = 0;
    2613             :         struct pool_workqueue *pwq;
    2614             : 
    2615             :         /*
    2616             :          * __queue_work() needs to test whether there are drainers, is much
    2617             :          * hotter than drain_workqueue() and already looks at @wq->flags.
    2618             :          * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
    2619             :          */
    2620           0 :         mutex_lock(&wq->mutex);
    2621           0 :         if (!wq->nr_drainers++)
    2622           0 :                 wq->flags |= __WQ_DRAINING;
    2623           0 :         mutex_unlock(&wq->mutex);
    2624             : reflush:
    2625           0 :         flush_workqueue(wq);
    2626             : 
    2627           0 :         mutex_lock(&wq->mutex);
    2628             : 
    2629           0 :         for_each_pwq(pwq, wq) {
    2630             :                 bool drained;
    2631             : 
    2632             :                 spin_lock_irq(&pwq->pool->lock);
    2633           0 :                 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
    2634             :                 spin_unlock_irq(&pwq->pool->lock);
    2635             : 
    2636           0 :                 if (drained)
    2637           0 :                         continue;
    2638             : 
    2639           0 :                 if (++flush_cnt == 10 ||
    2640           0 :                     (flush_cnt % 100 == 0 && flush_cnt <= 1000))
    2641           0 :                         pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
    2642             :                                 wq->name, flush_cnt);
    2643             : 
    2644           0 :                 mutex_unlock(&wq->mutex);
    2645           0 :                 goto reflush;
    2646             :         }
    2647             : 
    2648           0 :         if (!--wq->nr_drainers)
    2649           0 :                 wq->flags &= ~__WQ_DRAINING;
    2650           0 :         mutex_unlock(&wq->mutex);
    2651           0 : }
    2652             : EXPORT_SYMBOL_GPL(drain_workqueue);
    2653             : 
    2654        3795 : static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
    2655             : {
    2656             :         struct worker *worker = NULL;
    2657             :         struct worker_pool *pool;
    2658             :         struct pool_workqueue *pwq;
    2659             : 
    2660             :         might_sleep();
    2661             : 
    2662             :         local_irq_disable();
    2663        3795 :         pool = get_work_pool(work);
    2664        3795 :         if (!pool) {
    2665             :                 local_irq_enable();
    2666        3713 :                 return false;
    2667             :         }
    2668             : 
    2669             :         spin_lock(&pool->lock);
    2670             :         /* see the comment in try_to_grab_pending() with the same code */
    2671             :         pwq = get_work_pwq(work);
    2672          82 :         if (pwq) {
    2673           9 :                 if (unlikely(pwq->pool != pool))
    2674             :                         goto already_gone;
    2675             :         } else {
    2676          73 :                 worker = find_worker_executing_work(pool, work);
    2677          73 :                 if (!worker)
    2678             :                         goto already_gone;
    2679           0 :                 pwq = worker->current_pwq;
    2680             :         }
    2681             : 
    2682           9 :         insert_wq_barrier(pwq, barr, work, worker);
    2683             :         spin_unlock_irq(&pool->lock);
    2684             : 
    2685             :         /*
    2686             :          * If @max_active is 1 or rescuer is in use, flushing another work
    2687             :          * item on the same workqueue may lead to deadlock.  Make sure the
    2688             :          * flusher is not running on the same workqueue by verifying write
    2689             :          * access.
    2690             :          */
    2691             :         if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
    2692             :                 lock_map_acquire(&pwq->wq->lockdep_map);
    2693             :         else
    2694             :                 lock_map_acquire_read(&pwq->wq->lockdep_map);
    2695             :         lock_map_release(&pwq->wq->lockdep_map);
    2696             : 
    2697             :         return true;
    2698             : already_gone:
    2699             :         spin_unlock_irq(&pool->lock);
    2700             :         return false;
    2701             : }
    2702             : 
    2703             : /**
    2704             :  * flush_work - wait for a work to finish executing the last queueing instance
    2705             :  * @work: the work to flush
    2706             :  *
    2707             :  * Wait until @work has finished execution.  @work is guaranteed to be idle
    2708             :  * on return if it hasn't been requeued since flush started.
    2709             :  *
    2710             :  * Return:
    2711             :  * %true if flush_work() waited for the work to finish execution,
    2712             :  * %false if it was already idle.
    2713             :  */
    2714        3795 : bool flush_work(struct work_struct *work)
    2715             : {
    2716             :         struct wq_barrier barr;
    2717             : 
    2718             :         lock_map_acquire(&work->lockdep_map);
    2719             :         lock_map_release(&work->lockdep_map);
    2720             : 
    2721        3795 :         if (start_flush_work(work, &barr)) {
    2722           9 :                 wait_for_completion(&barr.done);
    2723             :                 destroy_work_on_stack(&barr.work);
    2724           9 :                 return true;
    2725             :         } else {
    2726             :                 return false;
    2727             :         }
    2728             : }
    2729             : EXPORT_SYMBOL_GPL(flush_work);
    2730             : 
    2731             : struct cwt_wait {
    2732             :         wait_queue_t            wait;
    2733             :         struct work_struct      *work;
    2734             : };
    2735             : 
    2736           0 : static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
    2737             : {
    2738             :         struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
    2739             : 
    2740           0 :         if (cwait->work != key)
    2741             :                 return 0;
    2742           0 :         return autoremove_wake_function(wait, mode, sync, key);
    2743             : }
    2744             : 
    2745        1398 : static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
    2746             : {
    2747             :         static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
    2748             :         unsigned long flags;
    2749             :         int ret;
    2750             : 
    2751             :         do {
    2752        1398 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    2753             :                 /*
    2754             :                  * If someone else is already canceling, wait for it to
    2755             :                  * finish.  flush_work() doesn't work for PREEMPT_NONE
    2756             :                  * because we may get scheduled between @work's completion
    2757             :                  * and the other canceling task resuming and clearing
    2758             :                  * CANCELING - flush_work() will return false immediately
    2759             :                  * as @work is no longer busy, try_to_grab_pending() will
    2760             :                  * return -ENOENT as @work is still being canceled and the
    2761             :                  * other canceling task won't be able to clear CANCELING as
    2762             :                  * we're hogging the CPU.
    2763             :                  *
    2764             :                  * Let's wait for completion using a waitqueue.  As this
    2765             :                  * may lead to the thundering herd problem, use a custom
    2766             :                  * wake function which matches @work along with exclusive
    2767             :                  * wait and wakeup.
    2768             :                  */
    2769        1398 :                 if (unlikely(ret == -ENOENT)) {
    2770             :                         struct cwt_wait cwait;
    2771             : 
    2772           0 :                         init_wait(&cwait.wait);
    2773           0 :                         cwait.wait.func = cwt_wakefn;
    2774           0 :                         cwait.work = work;
    2775             : 
    2776           0 :                         prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
    2777             :                                                   TASK_UNINTERRUPTIBLE);
    2778           0 :                         if (work_is_canceling(work))
    2779           0 :                                 schedule();
    2780           0 :                         finish_wait(&cancel_waitq, &cwait.wait);
    2781             :                 }
    2782        1398 :         } while (unlikely(ret < 0));
    2783             : 
    2784             :         /* tell other tasks trying to grab @work to back off */
    2785             :         mark_work_canceling(work);
    2786        2796 :         local_irq_restore(flags);
    2787             : 
    2788        1398 :         flush_work(work);
    2789             :         clear_work_data(work);
    2790             : 
    2791             :         /*
    2792             :          * Paired with prepare_to_wait() above so that either
    2793             :          * waitqueue_active() is visible here or !work_is_canceling() is
    2794             :          * visible there.
    2795             :          */
    2796        1398 :         smp_mb();
    2797        1398 :         if (waitqueue_active(&cancel_waitq))
    2798           0 :                 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
    2799             : 
    2800        1398 :         return ret;
    2801             : }
    2802             : 
    2803             : /**
    2804             :  * cancel_work_sync - cancel a work and wait for it to finish
    2805             :  * @work: the work to cancel
    2806             :  *
    2807             :  * Cancel @work and wait for its execution to finish.  This function
    2808             :  * can be used even if the work re-queues itself or migrates to
    2809             :  * another workqueue.  On return from this function, @work is
    2810             :  * guaranteed to be not pending or executing on any CPU.
    2811             :  *
    2812             :  * cancel_work_sync(&delayed_work->work) must not be used for
    2813             :  * delayed_work's.  Use cancel_delayed_work_sync() instead.
    2814             :  *
    2815             :  * The caller must ensure that the workqueue on which @work was last
    2816             :  * queued can't be destroyed before this function returns.
    2817             :  *
    2818             :  * Return:
    2819             :  * %true if @work was pending, %false otherwise.
    2820             :  */
    2821        1393 : bool cancel_work_sync(struct work_struct *work)
    2822             : {
    2823        1393 :         return __cancel_work_timer(work, false);
    2824             : }
    2825             : EXPORT_SYMBOL_GPL(cancel_work_sync);
    2826             : 
    2827             : /**
    2828             :  * flush_delayed_work - wait for a dwork to finish executing the last queueing
    2829             :  * @dwork: the delayed work to flush
    2830             :  *
    2831             :  * Delayed timer is cancelled and the pending work is queued for
    2832             :  * immediate execution.  Like flush_work(), this function only
    2833             :  * considers the last queueing instance of @dwork.
    2834             :  *
    2835             :  * Return:
    2836             :  * %true if flush_work() waited for the work to finish execution,
    2837             :  * %false if it was already idle.
    2838             :  */
    2839           0 : bool flush_delayed_work(struct delayed_work *dwork)
    2840             : {
    2841             :         local_irq_disable();
    2842           0 :         if (del_timer_sync(&dwork->timer))
    2843           0 :                 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    2844             :         local_irq_enable();
    2845           0 :         return flush_work(&dwork->work);
    2846             : }
    2847             : EXPORT_SYMBOL(flush_delayed_work);
    2848             : 
    2849             : /**
    2850             :  * cancel_delayed_work - cancel a delayed work
    2851             :  * @dwork: delayed_work to cancel
    2852             :  *
    2853             :  * Kill off a pending delayed_work.
    2854             :  *
    2855             :  * Return: %true if @dwork was pending and canceled; %false if it wasn't
    2856             :  * pending.
    2857             :  *
    2858             :  * Note:
    2859             :  * The work callback function may still be running on return, unless
    2860             :  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
    2861             :  * use cancel_delayed_work_sync() to wait on it.
    2862             :  *
    2863             :  * This function is safe to call from any context including IRQ handler.
    2864             :  */
    2865           3 : bool cancel_delayed_work(struct delayed_work *dwork)
    2866             : {
    2867             :         unsigned long flags;
    2868             :         int ret;
    2869             : 
    2870             :         do {
    2871           3 :                 ret = try_to_grab_pending(&dwork->work, true, &flags);
    2872           3 :         } while (unlikely(ret == -EAGAIN));
    2873             : 
    2874           3 :         if (unlikely(ret < 0))
    2875             :                 return false;
    2876             : 
    2877             :         set_work_pool_and_clear_pending(&dwork->work,
    2878             :                                         get_work_pool_id(&dwork->work));
    2879           6 :         local_irq_restore(flags);
    2880           3 :         return ret;
    2881             : }
    2882             : EXPORT_SYMBOL(cancel_delayed_work);
    2883             : 
    2884             : /**
    2885             :  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
    2886             :  * @dwork: the delayed work cancel
    2887             :  *
    2888             :  * This is cancel_work_sync() for delayed works.
    2889             :  *
    2890             :  * Return:
    2891             :  * %true if @dwork was pending, %false otherwise.
    2892             :  */
    2893           5 : bool cancel_delayed_work_sync(struct delayed_work *dwork)
    2894             : {
    2895           5 :         return __cancel_work_timer(&dwork->work, true);
    2896             : }
    2897             : EXPORT_SYMBOL(cancel_delayed_work_sync);
    2898             : 
    2899             : /**
    2900             :  * schedule_on_each_cpu - execute a function synchronously on each online CPU
    2901             :  * @func: the function to call
    2902             :  *
    2903             :  * schedule_on_each_cpu() executes @func on each online CPU using the
    2904             :  * system workqueue and blocks until all CPUs have completed.
    2905             :  * schedule_on_each_cpu() is very slow.
    2906             :  *
    2907             :  * Return:
    2908             :  * 0 on success, -errno on failure.
    2909             :  */
    2910           0 : int schedule_on_each_cpu(work_func_t func)
    2911             : {
    2912             :         int cpu;
    2913             :         struct work_struct __percpu *works;
    2914             : 
    2915           0 :         works = alloc_percpu(struct work_struct);
    2916           0 :         if (!works)
    2917             :                 return -ENOMEM;
    2918             : 
    2919             :         get_online_cpus();
    2920             : 
    2921           0 :         for_each_online_cpu(cpu) {
    2922             :                 struct work_struct *work = per_cpu_ptr(works, cpu);
    2923             : 
    2924           0 :                 INIT_WORK(work, func);
    2925             :                 schedule_work_on(cpu, work);
    2926             :         }
    2927             : 
    2928           0 :         for_each_online_cpu(cpu)
    2929           0 :                 flush_work(per_cpu_ptr(works, cpu));
    2930             : 
    2931             :         put_online_cpus();
    2932           0 :         free_percpu(works);
    2933           0 :         return 0;
    2934             : }
    2935             : 
    2936             : /**
    2937             :  * flush_scheduled_work - ensure that any scheduled work has run to completion.
    2938             :  *
    2939             :  * Forces execution of the kernel-global workqueue and blocks until its
    2940             :  * completion.
    2941             :  *
    2942             :  * Think twice before calling this function!  It's very easy to get into
    2943             :  * trouble if you don't take great care.  Either of the following situations
    2944             :  * will lead to deadlock:
    2945             :  *
    2946             :  *      One of the work items currently on the workqueue needs to acquire
    2947             :  *      a lock held by your code or its caller.
    2948             :  *
    2949             :  *      Your code is running in the context of a work routine.
    2950             :  *
    2951             :  * They will be detected by lockdep when they occur, but the first might not
    2952             :  * occur very often.  It depends on what work items are on the workqueue and
    2953             :  * what locks they need, which you have no control over.
    2954             :  *
    2955             :  * In most situations flushing the entire workqueue is overkill; you merely
    2956             :  * need to know that a particular work item isn't queued and isn't running.
    2957             :  * In such cases you should use cancel_delayed_work_sync() or
    2958             :  * cancel_work_sync() instead.
    2959             :  */
    2960           0 : void flush_scheduled_work(void)
    2961             : {
    2962           0 :         flush_workqueue(system_wq);
    2963           0 : }
    2964             : EXPORT_SYMBOL(flush_scheduled_work);
    2965             : 
    2966             : /**
    2967             :  * execute_in_process_context - reliably execute the routine with user context
    2968             :  * @fn:         the function to execute
    2969             :  * @ew:         guaranteed storage for the execute work structure (must
    2970             :  *              be available when the work executes)
    2971             :  *
    2972             :  * Executes the function immediately if process context is available,
    2973             :  * otherwise schedules the function for delayed execution.
    2974             :  *
    2975             :  * Return:      0 - function was executed
    2976             :  *              1 - function was scheduled for execution
    2977             :  */
    2978           0 : int execute_in_process_context(work_func_t fn, struct execute_work *ew)
    2979             : {
    2980           0 :         if (!in_interrupt()) {
    2981           0 :                 fn(&ew->work);
    2982           0 :                 return 0;
    2983             :         }
    2984             : 
    2985           0 :         INIT_WORK(&ew->work, fn);
    2986           0 :         schedule_work(&ew->work);
    2987             : 
    2988           0 :         return 1;
    2989             : }
    2990             : EXPORT_SYMBOL_GPL(execute_in_process_context);
    2991             : 
    2992             : #ifdef CONFIG_SYSFS
    2993             : /*
    2994             :  * Workqueues with WQ_SYSFS flag set is visible to userland via
    2995             :  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
    2996             :  * following attributes.
    2997             :  *
    2998             :  *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
    2999             :  *  max_active  RW int  : maximum number of in-flight work items
    3000             :  *
    3001             :  * Unbound workqueues have the following extra attributes.
    3002             :  *
    3003             :  *  id          RO int  : the associated pool ID
    3004             :  *  nice        RW int  : nice value of the workers
    3005             :  *  cpumask     RW mask : bitmask of allowed CPUs for the workers
    3006             :  */
    3007             : struct wq_device {
    3008             :         struct workqueue_struct         *wq;
    3009             :         struct device                   dev;
    3010             : };
    3011             : 
    3012             : static struct workqueue_struct *dev_to_wq(struct device *dev)
    3013             : {
    3014             :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    3015             : 
    3016           0 :         return wq_dev->wq;
    3017             : }
    3018             : 
    3019           0 : static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
    3020             :                             char *buf)
    3021             : {
    3022             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3023             : 
    3024           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
    3025             : }
    3026             : static DEVICE_ATTR_RO(per_cpu);
    3027             : 
    3028           0 : static ssize_t max_active_show(struct device *dev,
    3029             :                                struct device_attribute *attr, char *buf)
    3030             : {
    3031             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3032             : 
    3033           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
    3034             : }
    3035             : 
    3036           0 : static ssize_t max_active_store(struct device *dev,
    3037             :                                 struct device_attribute *attr, const char *buf,
    3038             :                                 size_t count)
    3039             : {
    3040             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3041             :         int val;
    3042             : 
    3043           0 :         if (sscanf(buf, "%d", &val) != 1 || val <= 0)
    3044             :                 return -EINVAL;
    3045             : 
    3046           0 :         workqueue_set_max_active(wq, val);
    3047           0 :         return count;
    3048             : }
    3049             : static DEVICE_ATTR_RW(max_active);
    3050             : 
    3051             : static struct attribute *wq_sysfs_attrs[] = {
    3052             :         &dev_attr_per_cpu.attr,
    3053             :         &dev_attr_max_active.attr,
    3054             :         NULL,
    3055             : };
    3056             : ATTRIBUTE_GROUPS(wq_sysfs);
    3057             : 
    3058           0 : static ssize_t wq_pool_ids_show(struct device *dev,
    3059             :                                 struct device_attribute *attr, char *buf)
    3060             : {
    3061             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3062             :         const char *delim = "";
    3063             :         int node, written = 0;
    3064             : 
    3065             :         rcu_read_lock_sched();
    3066           0 :         for_each_node(node) {
    3067           0 :                 written += scnprintf(buf + written, PAGE_SIZE - written,
    3068             :                                      "%s%d:%d", delim, node,
    3069           0 :                                      unbound_pwq_by_node(wq, node)->pool->id);
    3070             :                 delim = " ";
    3071             :         }
    3072           0 :         written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
    3073             :         rcu_read_unlock_sched();
    3074             : 
    3075           0 :         return written;
    3076             : }
    3077             : 
    3078           0 : static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
    3079             :                             char *buf)
    3080             : {
    3081             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3082             :         int written;
    3083             : 
    3084           0 :         mutex_lock(&wq->mutex);
    3085           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
    3086           0 :         mutex_unlock(&wq->mutex);
    3087             : 
    3088           0 :         return written;
    3089             : }
    3090             : 
    3091             : /* prepare workqueue_attrs for sysfs store operations */
    3092           0 : static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
    3093             : {
    3094             :         struct workqueue_attrs *attrs;
    3095             : 
    3096           0 :         attrs = alloc_workqueue_attrs(GFP_KERNEL);
    3097           0 :         if (!attrs)
    3098             :                 return NULL;
    3099             : 
    3100           0 :         mutex_lock(&wq->mutex);
    3101           0 :         copy_workqueue_attrs(attrs, wq->unbound_attrs);
    3102           0 :         mutex_unlock(&wq->mutex);
    3103           0 :         return attrs;
    3104             : }
    3105             : 
    3106           0 : static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
    3107             :                              const char *buf, size_t count)
    3108             : {
    3109             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3110             :         struct workqueue_attrs *attrs;
    3111             :         int ret;
    3112             : 
    3113           0 :         attrs = wq_sysfs_prep_attrs(wq);
    3114           0 :         if (!attrs)
    3115             :                 return -ENOMEM;
    3116             : 
    3117           0 :         if (sscanf(buf, "%d", &attrs->nice) == 1 &&
    3118           0 :             attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
    3119           0 :                 ret = apply_workqueue_attrs(wq, attrs);
    3120             :         else
    3121             :                 ret = -EINVAL;
    3122             : 
    3123             :         free_workqueue_attrs(attrs);
    3124           0 :         return ret ?: count;
    3125             : }
    3126             : 
    3127           0 : static ssize_t wq_cpumask_show(struct device *dev,
    3128             :                                struct device_attribute *attr, char *buf)
    3129             : {
    3130             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3131             :         int written;
    3132             : 
    3133           0 :         mutex_lock(&wq->mutex);
    3134           0 :         written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
    3135           0 :         mutex_unlock(&wq->mutex);
    3136             : 
    3137           0 :         written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
    3138           0 :         return written;
    3139             : }
    3140             : 
    3141           0 : static ssize_t wq_cpumask_store(struct device *dev,
    3142             :                                 struct device_attribute *attr,
    3143             :                                 const char *buf, size_t count)
    3144             : {
    3145             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3146             :         struct workqueue_attrs *attrs;
    3147             :         int ret;
    3148             : 
    3149           0 :         attrs = wq_sysfs_prep_attrs(wq);
    3150           0 :         if (!attrs)
    3151             :                 return -ENOMEM;
    3152             : 
    3153             :         ret = cpumask_parse(buf, attrs->cpumask);
    3154           0 :         if (!ret)
    3155           0 :                 ret = apply_workqueue_attrs(wq, attrs);
    3156             : 
    3157             :         free_workqueue_attrs(attrs);
    3158           0 :         return ret ?: count;
    3159             : }
    3160             : 
    3161           0 : static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
    3162             :                             char *buf)
    3163             : {
    3164             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3165             :         int written;
    3166             : 
    3167           0 :         mutex_lock(&wq->mutex);
    3168           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n",
    3169           0 :                             !wq->unbound_attrs->no_numa);
    3170           0 :         mutex_unlock(&wq->mutex);
    3171             : 
    3172           0 :         return written;
    3173             : }
    3174             : 
    3175           0 : static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
    3176             :                              const char *buf, size_t count)
    3177             : {
    3178             :         struct workqueue_struct *wq = dev_to_wq(dev);
    3179             :         struct workqueue_attrs *attrs;
    3180             :         int v, ret;
    3181             : 
    3182           0 :         attrs = wq_sysfs_prep_attrs(wq);
    3183           0 :         if (!attrs)
    3184             :                 return -ENOMEM;
    3185             : 
    3186             :         ret = -EINVAL;
    3187           0 :         if (sscanf(buf, "%d", &v) == 1) {
    3188           0 :                 attrs->no_numa = !v;
    3189           0 :                 ret = apply_workqueue_attrs(wq, attrs);
    3190             :         }
    3191             : 
    3192             :         free_workqueue_attrs(attrs);
    3193           0 :         return ret ?: count;
    3194             : }
    3195             : 
    3196             : static struct device_attribute wq_sysfs_unbound_attrs[] = {
    3197             :         __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
    3198             :         __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
    3199             :         __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
    3200             :         __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
    3201             :         __ATTR_NULL,
    3202             : };
    3203             : 
    3204             : static struct bus_type wq_subsys = {
    3205             :         .name                           = "workqueue",
    3206             :         .dev_groups                     = wq_sysfs_groups,
    3207             : };
    3208             : 
    3209           1 : static int __init wq_sysfs_init(void)
    3210             : {
    3211           1 :         return subsys_virtual_register(&wq_subsys, NULL);
    3212             : }
    3213             : core_initcall(wq_sysfs_init);
    3214             : 
    3215           0 : static void wq_device_release(struct device *dev)
    3216             : {
    3217           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    3218             : 
    3219           0 :         kfree(wq_dev);
    3220           0 : }
    3221             : 
    3222             : /**
    3223             :  * workqueue_sysfs_register - make a workqueue visible in sysfs
    3224             :  * @wq: the workqueue to register
    3225             :  *
    3226             :  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
    3227             :  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
    3228             :  * which is the preferred method.
    3229             :  *
    3230             :  * Workqueue user should use this function directly iff it wants to apply
    3231             :  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
    3232             :  * apply_workqueue_attrs() may race against userland updating the
    3233             :  * attributes.
    3234             :  *
    3235             :  * Return: 0 on success, -errno on failure.
    3236             :  */
    3237           1 : int workqueue_sysfs_register(struct workqueue_struct *wq)
    3238             : {
    3239             :         struct wq_device *wq_dev;
    3240             :         int ret;
    3241             : 
    3242             :         /*
    3243             :          * Adjusting max_active or creating new pwqs by applyting
    3244             :          * attributes breaks ordering guarantee.  Disallow exposing ordered
    3245             :          * workqueues.
    3246             :          */
    3247           1 :         if (WARN_ON(wq->flags & __WQ_ORDERED))
    3248             :                 return -EINVAL;
    3249             : 
    3250           1 :         wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
    3251           1 :         if (!wq_dev)
    3252             :                 return -ENOMEM;
    3253             : 
    3254           1 :         wq_dev->wq = wq;
    3255           1 :         wq_dev->dev.bus = &wq_subsys;
    3256           1 :         wq_dev->dev.init_name = wq->name;
    3257           1 :         wq_dev->dev.release = wq_device_release;
    3258             : 
    3259             :         /*
    3260             :          * unbound_attrs are created separately.  Suppress uevent until
    3261             :          * everything is ready.
    3262             :          */
    3263             :         dev_set_uevent_suppress(&wq_dev->dev, true);
    3264             : 
    3265           1 :         ret = device_register(&wq_dev->dev);
    3266           1 :         if (ret) {
    3267           0 :                 kfree(wq_dev);
    3268           0 :                 wq->wq_dev = NULL;
    3269           0 :                 return ret;
    3270             :         }
    3271             : 
    3272           1 :         if (wq->flags & WQ_UNBOUND) {
    3273             :                 struct device_attribute *attr;
    3274             : 
    3275           4 :                 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
    3276           4 :                         ret = device_create_file(&wq_dev->dev, attr);
    3277           4 :                         if (ret) {
    3278           0 :                                 device_unregister(&wq_dev->dev);
    3279           0 :                                 wq->wq_dev = NULL;
    3280           0 :                                 return ret;
    3281             :                         }
    3282             :                 }
    3283             :         }
    3284             : 
    3285             :         dev_set_uevent_suppress(&wq_dev->dev, false);
    3286           1 :         kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
    3287           1 :         return 0;
    3288             : }
    3289             : 
    3290             : /**
    3291             :  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
    3292             :  * @wq: the workqueue to unregister
    3293             :  *
    3294             :  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
    3295             :  */
    3296             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
    3297             : {
    3298           0 :         struct wq_device *wq_dev = wq->wq_dev;
    3299             : 
    3300           0 :         if (!wq->wq_dev)
    3301             :                 return;
    3302             : 
    3303           0 :         wq->wq_dev = NULL;
    3304           0 :         device_unregister(&wq_dev->dev);
    3305             : }
    3306             : #else   /* CONFIG_SYSFS */
    3307             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
    3308             : #endif  /* CONFIG_SYSFS */
    3309             : 
    3310             : /**
    3311             :  * free_workqueue_attrs - free a workqueue_attrs
    3312             :  * @attrs: workqueue_attrs to free
    3313             :  *
    3314             :  * Undo alloc_workqueue_attrs().
    3315             :  */
    3316           0 : void free_workqueue_attrs(struct workqueue_attrs *attrs)
    3317             : {
    3318          26 :         if (attrs) {
    3319             :                 free_cpumask_var(attrs->cpumask);
    3320          26 :                 kfree(attrs);
    3321             :         }
    3322           0 : }
    3323             : 
    3324             : /**
    3325             :  * alloc_workqueue_attrs - allocate a workqueue_attrs
    3326             :  * @gfp_mask: allocation mask to use
    3327             :  *
    3328             :  * Allocate a new workqueue_attrs, initialize with default settings and
    3329             :  * return it.
    3330             :  *
    3331             :  * Return: The allocated new workqueue_attr on success. %NULL on failure.
    3332             :  */
    3333          46 : struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
    3334             : {
    3335             :         struct workqueue_attrs *attrs;
    3336             : 
    3337             :         attrs = kzalloc(sizeof(*attrs), gfp_mask);
    3338          46 :         if (!attrs)
    3339             :                 goto fail;
    3340             :         if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
    3341             :                 goto fail;
    3342             : 
    3343          46 :         cpumask_copy(attrs->cpumask, cpu_possible_mask);
    3344          46 :         return attrs;
    3345             : fail:
    3346             :         free_workqueue_attrs(attrs);
    3347             :         return NULL;
    3348             : }
    3349             : 
    3350             : static void copy_workqueue_attrs(struct workqueue_attrs *to,
    3351             :                                  const struct workqueue_attrs *from)
    3352             : {
    3353          40 :         to->nice = from->nice;
    3354             :         cpumask_copy(to->cpumask, from->cpumask);
    3355             :         /*
    3356             :          * Unlike hash and equality test, this function doesn't ignore
    3357             :          * ->no_numa as it is used for both pool and wq attrs.  Instead,
    3358             :          * get_unbound_pool() explicitly clears ->no_numa after copying.
    3359             :          */
    3360          40 :         to->no_numa = from->no_numa;
    3361             : }
    3362             : 
    3363             : /* hash value of the content of @attr */
    3364          13 : static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
    3365             : {
    3366             :         u32 hash = 0;
    3367             : 
    3368          13 :         hash = jhash_1word(attrs->nice, hash);
    3369          13 :         hash = jhash(cpumask_bits(attrs->cpumask),
    3370             :                      BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
    3371          13 :         return hash;
    3372             : }
    3373             : 
    3374             : /* content equality test */
    3375             : static bool wqattrs_equal(const struct workqueue_attrs *a,
    3376             :                           const struct workqueue_attrs *b)
    3377             : {
    3378          12 :         if (a->nice != b->nice)
    3379             :                 return false;
    3380          12 :         if (!cpumask_equal(a->cpumask, b->cpumask))
    3381             :                 return false;
    3382             :         return true;
    3383             : }
    3384             : 
    3385             : /**
    3386             :  * init_worker_pool - initialize a newly zalloc'd worker_pool
    3387             :  * @pool: worker_pool to initialize
    3388             :  *
    3389             :  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
    3390             :  *
    3391             :  * Return: 0 on success, -errno on failure.  Even on failure, all fields
    3392             :  * inside @pool proper are initialized and put_unbound_pool() can be called
    3393             :  * on @pool safely to release it.
    3394             :  */
    3395           3 : static int init_worker_pool(struct worker_pool *pool)
    3396             : {
    3397             :         spin_lock_init(&pool->lock);
    3398           3 :         pool->id = -1;
    3399           3 :         pool->cpu = -1;
    3400           3 :         pool->node = NUMA_NO_NODE;
    3401           3 :         pool->flags |= POOL_DISASSOCIATED;
    3402           3 :         INIT_LIST_HEAD(&pool->worklist);
    3403           3 :         INIT_LIST_HEAD(&pool->idle_list);
    3404           3 :         hash_init(pool->busy_hash);
    3405             : 
    3406           3 :         init_timer_deferrable(&pool->idle_timer);
    3407           3 :         pool->idle_timer.function = idle_worker_timeout;
    3408           3 :         pool->idle_timer.data = (unsigned long)pool;
    3409             : 
    3410           3 :         setup_timer(&pool->mayday_timer, pool_mayday_timeout,
    3411             :                     (unsigned long)pool);
    3412             : 
    3413           3 :         mutex_init(&pool->manager_arb);
    3414           3 :         mutex_init(&pool->attach_mutex);
    3415           3 :         INIT_LIST_HEAD(&pool->workers);
    3416             : 
    3417           3 :         ida_init(&pool->worker_ida);
    3418             :         INIT_HLIST_NODE(&pool->hash_node);
    3419           3 :         pool->refcnt = 1;
    3420             : 
    3421             :         /* shouldn't fail above this point */
    3422           3 :         pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
    3423           3 :         if (!pool->attrs)
    3424             :                 return -ENOMEM;
    3425           3 :         return 0;
    3426             : }
    3427             : 
    3428           0 : static void rcu_free_pool(struct rcu_head *rcu)
    3429             : {
    3430           0 :         struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
    3431             : 
    3432           0 :         ida_destroy(&pool->worker_ida);
    3433           0 :         free_workqueue_attrs(pool->attrs);
    3434           0 :         kfree(pool);
    3435           0 : }
    3436             : 
    3437             : /**
    3438             :  * put_unbound_pool - put a worker_pool
    3439             :  * @pool: worker_pool to put
    3440             :  *
    3441             :  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
    3442             :  * safe manner.  get_unbound_pool() calls this function on its failure path
    3443             :  * and this function should be able to release pools which went through,
    3444             :  * successfully or not, init_worker_pool().
    3445             :  *
    3446             :  * Should be called with wq_pool_mutex held.
    3447             :  */
    3448           0 : static void put_unbound_pool(struct worker_pool *pool)
    3449             : {
    3450           0 :         DECLARE_COMPLETION_ONSTACK(detach_completion);
    3451             :         struct worker *worker;
    3452             : 
    3453             :         lockdep_assert_held(&wq_pool_mutex);
    3454             : 
    3455           0 :         if (--pool->refcnt)
    3456           0 :                 return;
    3457             : 
    3458             :         /* sanity checks */
    3459           0 :         if (WARN_ON(!(pool->cpu < 0)) ||
    3460           0 :             WARN_ON(!list_empty(&pool->worklist)))
    3461             :                 return;
    3462             : 
    3463             :         /* release id and unhash */
    3464           0 :         if (pool->id >= 0)
    3465           0 :                 idr_remove(&worker_pool_idr, pool->id);
    3466             :         hash_del(&pool->hash_node);
    3467             : 
    3468             :         /*
    3469             :          * Become the manager and destroy all workers.  Grabbing
    3470             :          * manager_arb prevents @pool's workers from blocking on
    3471             :          * attach_mutex.
    3472             :          */
    3473           0 :         mutex_lock(&pool->manager_arb);
    3474             : 
    3475             :         spin_lock_irq(&pool->lock);
    3476           0 :         while ((worker = first_idle_worker(pool)))
    3477           0 :                 destroy_worker(worker);
    3478             :         WARN_ON(pool->nr_workers || pool->nr_idle);
    3479             :         spin_unlock_irq(&pool->lock);
    3480             : 
    3481           0 :         mutex_lock(&pool->attach_mutex);
    3482           0 :         if (!list_empty(&pool->workers))
    3483           0 :                 pool->detach_completion = &detach_completion;
    3484           0 :         mutex_unlock(&pool->attach_mutex);
    3485             : 
    3486           0 :         if (pool->detach_completion)
    3487           0 :                 wait_for_completion(pool->detach_completion);
    3488             : 
    3489           0 :         mutex_unlock(&pool->manager_arb);
    3490             : 
    3491             :         /* shut down the timers */
    3492           0 :         del_timer_sync(&pool->idle_timer);
    3493           0 :         del_timer_sync(&pool->mayday_timer);
    3494             : 
    3495             :         /* sched-RCU protected to allow dereferences from get_work_pool() */
    3496           0 :         call_rcu_sched(&pool->rcu, rcu_free_pool);
    3497             : }
    3498             : 
    3499             : /**
    3500             :  * get_unbound_pool - get a worker_pool with the specified attributes
    3501             :  * @attrs: the attributes of the worker_pool to get
    3502             :  *
    3503             :  * Obtain a worker_pool which has the same attributes as @attrs, bump the
    3504             :  * reference count and return it.  If there already is a matching
    3505             :  * worker_pool, it will be used; otherwise, this function attempts to
    3506             :  * create a new one.
    3507             :  *
    3508             :  * Should be called with wq_pool_mutex held.
    3509             :  *
    3510             :  * Return: On success, a worker_pool with the same attributes as @attrs.
    3511             :  * On failure, %NULL.
    3512             :  */
    3513          13 : static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
    3514             : {
    3515          13 :         u32 hash = wqattrs_hash(attrs);
    3516             :         struct worker_pool *pool;
    3517             :         int node;
    3518             : 
    3519             :         lockdep_assert_held(&wq_pool_mutex);
    3520             : 
    3521             :         /* do we already have a matching pool? */
    3522          13 :         hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
    3523          24 :                 if (wqattrs_equal(pool->attrs, attrs)) {
    3524          12 :                         pool->refcnt++;
    3525          12 :                         return pool;
    3526             :                 }
    3527             :         }
    3528             : 
    3529             :         /* nope, create a new one */
    3530             :         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
    3531           1 :         if (!pool || init_worker_pool(pool) < 0)
    3532             :                 goto fail;
    3533             : 
    3534             :         lockdep_set_subclass(&pool->lock, 1);    /* see put_pwq() */
    3535           1 :         copy_workqueue_attrs(pool->attrs, attrs);
    3536             : 
    3537             :         /*
    3538             :          * no_numa isn't a worker_pool attribute, always clear it.  See
    3539             :          * 'struct workqueue_attrs' comments for detail.
    3540             :          */
    3541           1 :         pool->attrs->no_numa = false;
    3542             : 
    3543             :         /* if cpumask is contained inside a NUMA node, we belong to that node */
    3544           1 :         if (wq_numa_enabled) {
    3545           0 :                 for_each_node(node) {
    3546           0 :                         if (cpumask_subset(pool->attrs->cpumask,
    3547           0 :                                            wq_numa_possible_cpumask[node])) {
    3548           0 :                                 pool->node = node;
    3549           0 :                                 break;
    3550             :                         }
    3551             :                 }
    3552             :         }
    3553             : 
    3554           1 :         if (worker_pool_assign_id(pool) < 0)
    3555             :                 goto fail;
    3556             : 
    3557             :         /* create and start the initial worker */
    3558           1 :         if (!create_worker(pool))
    3559             :                 goto fail;
    3560             : 
    3561             :         /* install */
    3562           1 :         hash_add(unbound_pool_hash, &pool->hash_node, hash);
    3563             : 
    3564           1 :         return pool;
    3565             : fail:
    3566           0 :         if (pool)
    3567           0 :                 put_unbound_pool(pool);
    3568             :         return NULL;
    3569             : }
    3570             : 
    3571           0 : static void rcu_free_pwq(struct rcu_head *rcu)
    3572             : {
    3573           0 :         kmem_cache_free(pwq_cache,
    3574           0 :                         container_of(rcu, struct pool_workqueue, rcu));
    3575           0 : }
    3576             : 
    3577             : /*
    3578             :  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
    3579             :  * and needs to be destroyed.
    3580             :  */
    3581           0 : static void pwq_unbound_release_workfn(struct work_struct *work)
    3582             : {
    3583             :         struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
    3584             :                                                   unbound_release_work);
    3585           0 :         struct workqueue_struct *wq = pwq->wq;
    3586           0 :         struct worker_pool *pool = pwq->pool;
    3587             :         bool is_last;
    3588             : 
    3589           0 :         if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
    3590           0 :                 return;
    3591             : 
    3592           0 :         mutex_lock(&wq->mutex);
    3593             :         list_del_rcu(&pwq->pwqs_node);
    3594           0 :         is_last = list_empty(&wq->pwqs);
    3595           0 :         mutex_unlock(&wq->mutex);
    3596             : 
    3597           0 :         mutex_lock(&wq_pool_mutex);
    3598           0 :         put_unbound_pool(pool);
    3599           0 :         mutex_unlock(&wq_pool_mutex);
    3600             : 
    3601           0 :         call_rcu_sched(&pwq->rcu, rcu_free_pwq);
    3602             : 
    3603             :         /*
    3604             :          * If we're the last pwq going away, @wq is already dead and no one
    3605             :          * is gonna access it anymore.  Free it.
    3606             :          */
    3607           0 :         if (is_last) {
    3608           0 :                 free_workqueue_attrs(wq->unbound_attrs);
    3609           0 :                 kfree(wq);
    3610             :         }
    3611             : }
    3612             : 
    3613             : /**
    3614             :  * pwq_adjust_max_active - update a pwq's max_active to the current setting
    3615             :  * @pwq: target pool_workqueue
    3616             :  *
    3617             :  * If @pwq isn't freezing, set @pwq->max_active to the associated
    3618             :  * workqueue's saved_max_active and activate delayed work items
    3619             :  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
    3620             :  */
    3621          56 : static void pwq_adjust_max_active(struct pool_workqueue *pwq)
    3622             : {
    3623          56 :         struct workqueue_struct *wq = pwq->wq;
    3624          56 :         bool freezable = wq->flags & WQ_FREEZABLE;
    3625             : 
    3626             :         /* for @wq->saved_max_active */
    3627             :         lockdep_assert_held(&wq->mutex);
    3628             : 
    3629             :         /* fast exit for non-freezable wqs */
    3630          56 :         if (!freezable && pwq->max_active == wq->saved_max_active)
    3631          56 :                 return;
    3632             : 
    3633             :         spin_lock_irq(&pwq->pool->lock);
    3634             : 
    3635             :         /*
    3636             :          * During [un]freezing, the caller is responsible for ensuring that
    3637             :          * this function is called at least once after @workqueue_freezing
    3638             :          * is updated and visible.
    3639             :          */
    3640          32 :         if (!freezable || !workqueue_freezing) {
    3641          32 :                 pwq->max_active = wq->saved_max_active;
    3642             : 
    3643          96 :                 while (!list_empty(&pwq->delayed_works) &&
    3644           0 :                        pwq->nr_active < pwq->max_active)
    3645             :                         pwq_activate_first_delayed(pwq);
    3646             : 
    3647             :                 /*
    3648             :                  * Need to kick a worker after thawed or an unbound wq's
    3649             :                  * max_active is bumped.  It's a slow path.  Do it always.
    3650             :                  */
    3651          32 :                 wake_up_worker(pwq->pool);
    3652             :         } else {
    3653           0 :                 pwq->max_active = 0;
    3654             :         }
    3655             : 
    3656             :         spin_unlock_irq(&pwq->pool->lock);
    3657             : }
    3658             : 
    3659             : /* initialize newly alloced @pwq which is associated with @wq and @pool */
    3660          28 : static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
    3661             :                      struct worker_pool *pool)
    3662             : {
    3663             :         BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
    3664             : 
    3665          28 :         memset(pwq, 0, sizeof(*pwq));
    3666             : 
    3667          28 :         pwq->pool = pool;
    3668          28 :         pwq->wq = wq;
    3669          28 :         pwq->flush_color = -1;
    3670          28 :         pwq->refcnt = 1;
    3671          28 :         INIT_LIST_HEAD(&pwq->delayed_works);
    3672          28 :         INIT_LIST_HEAD(&pwq->pwqs_node);
    3673          28 :         INIT_LIST_HEAD(&pwq->mayday_node);
    3674          56 :         INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
    3675          28 : }
    3676             : 
    3677             : /* sync @pwq with the current state of its associated wq and link it */
    3678          41 : static void link_pwq(struct pool_workqueue *pwq)
    3679             : {
    3680          41 :         struct workqueue_struct *wq = pwq->wq;
    3681             : 
    3682             :         lockdep_assert_held(&wq->mutex);
    3683             : 
    3684             :         /* may be called multiple times, ignore if already linked */
    3685          82 :         if (!list_empty(&pwq->pwqs_node))
    3686          41 :                 return;
    3687             : 
    3688             :         /* set the matching work_color */
    3689          28 :         pwq->work_color = wq->work_color;
    3690             : 
    3691             :         /* sync max_active to the current setting */
    3692          28 :         pwq_adjust_max_active(pwq);
    3693             : 
    3694             :         /* link in @pwq */
    3695          28 :         list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
    3696             : }
    3697             : 
    3698             : /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
    3699          13 : static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
    3700             :                                         const struct workqueue_attrs *attrs)
    3701             : {
    3702             :         struct worker_pool *pool;
    3703             :         struct pool_workqueue *pwq;
    3704             : 
    3705             :         lockdep_assert_held(&wq_pool_mutex);
    3706             : 
    3707          13 :         pool = get_unbound_pool(attrs);
    3708          13 :         if (!pool)
    3709             :                 return NULL;
    3710             : 
    3711          13 :         pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
    3712          13 :         if (!pwq) {
    3713           0 :                 put_unbound_pool(pool);
    3714           0 :                 return NULL;
    3715             :         }
    3716             : 
    3717          13 :         init_pwq(pwq, wq, pool);
    3718          13 :         return pwq;
    3719             : }
    3720             : 
    3721             : /* undo alloc_unbound_pwq(), used only in the error path */
    3722           0 : static void free_unbound_pwq(struct pool_workqueue *pwq)
    3723             : {
    3724             :         lockdep_assert_held(&wq_pool_mutex);
    3725             : 
    3726           0 :         if (pwq) {
    3727           0 :                 put_unbound_pool(pwq->pool);
    3728           0 :                 kmem_cache_free(pwq_cache, pwq);
    3729             :         }
    3730           0 : }
    3731             : 
    3732             : /**
    3733             :  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
    3734             :  * @attrs: the wq_attrs of interest
    3735             :  * @node: the target NUMA node
    3736             :  * @cpu_going_down: if >= 0, the CPU to consider as offline
    3737             :  * @cpumask: outarg, the resulting cpumask
    3738             :  *
    3739             :  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
    3740             :  * @cpu_going_down is >= 0, that cpu is considered offline during
    3741             :  * calculation.  The result is stored in @cpumask.
    3742             :  *
    3743             :  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
    3744             :  * enabled and @node has online CPUs requested by @attrs, the returned
    3745             :  * cpumask is the intersection of the possible CPUs of @node and
    3746             :  * @attrs->cpumask.
    3747             :  *
    3748             :  * The caller is responsible for ensuring that the cpumask of @node stays
    3749             :  * stable.
    3750             :  *
    3751             :  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
    3752             :  * %false if equal.
    3753             :  */
    3754          13 : static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
    3755             :                                  int cpu_going_down, cpumask_t *cpumask)
    3756             : {
    3757          13 :         if (!wq_numa_enabled || attrs->no_numa)
    3758             :                 goto use_dfl;
    3759             : 
    3760             :         /* does @node have any online CPUs @attrs wants? */
    3761           0 :         cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
    3762           0 :         if (cpu_going_down >= 0)
    3763             :                 cpumask_clear_cpu(cpu_going_down, cpumask);
    3764             : 
    3765           0 :         if (cpumask_empty(cpumask))
    3766             :                 goto use_dfl;
    3767             : 
    3768             :         /* yeap, return possible CPUs in @node that @attrs wants */
    3769           0 :         cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
    3770           0 :         return !cpumask_equal(cpumask, attrs->cpumask);
    3771             : 
    3772             : use_dfl:
    3773             :         cpumask_copy(cpumask, attrs->cpumask);
    3774          13 :         return false;
    3775             : }
    3776             : 
    3777             : /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
    3778             : static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
    3779             :                                                    int node,
    3780             :                                                    struct pool_workqueue *pwq)
    3781             : {
    3782             :         struct pool_workqueue *old_pwq;
    3783             : 
    3784             :         lockdep_assert_held(&wq->mutex);
    3785             : 
    3786             :         /* link_pwq() can handle duplicate calls */
    3787          13 :         link_pwq(pwq);
    3788             : 
    3789          13 :         old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    3790          13 :         rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
    3791             :         return old_pwq;
    3792             : }
    3793             : 
    3794             : /**
    3795             :  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
    3796             :  * @wq: the target workqueue
    3797             :  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
    3798             :  *
    3799             :  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
    3800             :  * machines, this function maps a separate pwq to each NUMA node with
    3801             :  * possibles CPUs in @attrs->cpumask so that work items are affine to the
    3802             :  * NUMA node it was issued on.  Older pwqs are released as in-flight work
    3803             :  * items finish.  Note that a work item which repeatedly requeues itself
    3804             :  * back-to-back will stay on its current pwq.
    3805             :  *
    3806             :  * Performs GFP_KERNEL allocations.
    3807             :  *
    3808             :  * Return: 0 on success and -errno on failure.
    3809             :  */
    3810          13 : int apply_workqueue_attrs(struct workqueue_struct *wq,
    3811             :                           const struct workqueue_attrs *attrs)
    3812             : {
    3813             :         struct workqueue_attrs *new_attrs, *tmp_attrs;
    3814             :         struct pool_workqueue **pwq_tbl, *dfl_pwq;
    3815             :         int node, ret;
    3816             : 
    3817             :         /* only unbound workqueues can change attributes */
    3818          13 :         if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
    3819             :                 return -EINVAL;
    3820             : 
    3821             :         /* creating multiple pwqs breaks ordering guarantee */
    3822          21 :         if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
    3823             :                 return -EINVAL;
    3824             : 
    3825             :         pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
    3826          13 :         new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
    3827          13 :         tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
    3828          13 :         if (!pwq_tbl || !new_attrs || !tmp_attrs)
    3829             :                 goto enomem;
    3830             : 
    3831             :         /* make a copy of @attrs and sanitize it */
    3832             :         copy_workqueue_attrs(new_attrs, attrs);
    3833          13 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
    3834             : 
    3835             :         /*
    3836             :          * We may create multiple pwqs with differing cpumasks.  Make a
    3837             :          * copy of @new_attrs which will be modified and used to obtain
    3838             :          * pools.
    3839             :          */
    3840             :         copy_workqueue_attrs(tmp_attrs, new_attrs);
    3841             : 
    3842             :         /*
    3843             :          * CPUs should stay stable across pwq creations and installations.
    3844             :          * Pin CPUs, determine the target cpumask for each node and create
    3845             :          * pwqs accordingly.
    3846             :          */
    3847             :         get_online_cpus();
    3848             : 
    3849          13 :         mutex_lock(&wq_pool_mutex);
    3850             : 
    3851             :         /*
    3852             :          * If something goes wrong during CPU up/down, we'll fall back to
    3853             :          * the default pwq covering whole @attrs->cpumask.  Always create
    3854             :          * it even if we don't use it immediately.
    3855             :          */
    3856          13 :         dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
    3857          13 :         if (!dfl_pwq)
    3858             :                 goto enomem_pwq;
    3859             : 
    3860          26 :         for_each_node(node) {
    3861          13 :                 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
    3862           0 :                         pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
    3863           0 :                         if (!pwq_tbl[node])
    3864             :                                 goto enomem_pwq;
    3865             :                 } else {
    3866          13 :                         dfl_pwq->refcnt++;
    3867          13 :                         pwq_tbl[node] = dfl_pwq;
    3868             :                 }
    3869             :         }
    3870             : 
    3871          13 :         mutex_unlock(&wq_pool_mutex);
    3872             : 
    3873             :         /* all pwqs have been created successfully, let's install'em */
    3874          13 :         mutex_lock(&wq->mutex);
    3875             : 
    3876          13 :         copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
    3877             : 
    3878             :         /* save the previous pwq and install the new one */
    3879          39 :         for_each_node(node)
    3880          26 :                 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
    3881             : 
    3882             :         /* @dfl_pwq might not have been used, ensure it's linked */
    3883          13 :         link_pwq(dfl_pwq);
    3884          13 :         swap(wq->dfl_pwq, dfl_pwq);
    3885             : 
    3886          13 :         mutex_unlock(&wq->mutex);
    3887             : 
    3888             :         /* put the old pwqs */
    3889          39 :         for_each_node(node)
    3890          13 :                 put_pwq_unlocked(pwq_tbl[node]);
    3891          13 :         put_pwq_unlocked(dfl_pwq);
    3892             : 
    3893             :         put_online_cpus();
    3894             :         ret = 0;
    3895             :         /* fall through */
    3896             : out_free:
    3897             :         free_workqueue_attrs(tmp_attrs);
    3898             :         free_workqueue_attrs(new_attrs);
    3899          13 :         kfree(pwq_tbl);
    3900          13 :         return ret;
    3901             : 
    3902             : enomem_pwq:
    3903           0 :         free_unbound_pwq(dfl_pwq);
    3904           0 :         for_each_node(node)
    3905           0 :                 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
    3906           0 :                         free_unbound_pwq(pwq_tbl[node]);
    3907           0 :         mutex_unlock(&wq_pool_mutex);
    3908             :         put_online_cpus();
    3909             : enomem:
    3910             :         ret = -ENOMEM;
    3911             :         goto out_free;
    3912             : }
    3913             : 
    3914             : /**
    3915             :  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
    3916             :  * @wq: the target workqueue
    3917             :  * @cpu: the CPU coming up or going down
    3918             :  * @online: whether @cpu is coming up or going down
    3919             :  *
    3920             :  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
    3921             :  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
    3922             :  * @wq accordingly.
    3923             :  *
    3924             :  * If NUMA affinity can't be adjusted due to memory allocation failure, it
    3925             :  * falls back to @wq->dfl_pwq which may not be optimal but is always
    3926             :  * correct.
    3927             :  *
    3928             :  * Note that when the last allowed CPU of a NUMA node goes offline for a
    3929             :  * workqueue with a cpumask spanning multiple nodes, the workers which were
    3930             :  * already executing the work items for the workqueue will lose their CPU
    3931             :  * affinity and may execute on any CPU.  This is similar to how per-cpu
    3932             :  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
    3933             :  * affinity, it's the user's responsibility to flush the work item from
    3934             :  * CPU_DOWN_PREPARE.
    3935             :  */
    3936             : static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
    3937             :                                    bool online)
    3938             : {
    3939             :         int node = cpu_to_node(cpu);
    3940             :         int cpu_off = online ? -1 : cpu;
    3941             :         struct pool_workqueue *old_pwq = NULL, *pwq;
    3942             :         struct workqueue_attrs *target_attrs;
    3943             :         cpumask_t *cpumask;
    3944             : 
    3945             :         lockdep_assert_held(&wq_pool_mutex);
    3946             : 
    3947             :         if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
    3948             :                 return;
    3949             : 
    3950             :         /*
    3951             :          * We don't wanna alloc/free wq_attrs for each wq for each CPU.
    3952             :          * Let's use a preallocated one.  The following buf is protected by
    3953             :          * CPU hotplug exclusion.
    3954             :          */
    3955             :         target_attrs = wq_update_unbound_numa_attrs_buf;
    3956             :         cpumask = target_attrs->cpumask;
    3957             : 
    3958             :         mutex_lock(&wq->mutex);
    3959             :         if (wq->unbound_attrs->no_numa)
    3960             :                 goto out_unlock;
    3961             : 
    3962             :         copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
    3963             :         pwq = unbound_pwq_by_node(wq, node);
    3964             : 
    3965             :         /*
    3966             :          * Let's determine what needs to be done.  If the target cpumask is
    3967             :          * different from wq's, we need to compare it to @pwq's and create
    3968             :          * a new one if they don't match.  If the target cpumask equals
    3969             :          * wq's, the default pwq should be used.
    3970             :          */
    3971             :         if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
    3972             :                 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
    3973             :                         goto out_unlock;
    3974             :         } else {
    3975             :                 goto use_dfl_pwq;
    3976             :         }
    3977             : 
    3978             :         mutex_unlock(&wq->mutex);
    3979             : 
    3980             :         /* create a new pwq */
    3981             :         pwq = alloc_unbound_pwq(wq, target_attrs);
    3982             :         if (!pwq) {
    3983             :                 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
    3984             :                         wq->name);
    3985             :                 mutex_lock(&wq->mutex);
    3986             :                 goto use_dfl_pwq;
    3987             :         }
    3988             : 
    3989             :         /*
    3990             :          * Install the new pwq.  As this function is called only from CPU
    3991             :          * hotplug callbacks and applying a new attrs is wrapped with
    3992             :          * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
    3993             :          * inbetween.
    3994             :          */
    3995             :         mutex_lock(&wq->mutex);
    3996             :         old_pwq = numa_pwq_tbl_install(wq, node, pwq);
    3997             :         goto out_unlock;
    3998             : 
    3999             : use_dfl_pwq:
    4000             :         spin_lock_irq(&wq->dfl_pwq->pool->lock);
    4001             :         get_pwq(wq->dfl_pwq);
    4002             :         spin_unlock_irq(&wq->dfl_pwq->pool->lock);
    4003             :         old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
    4004             : out_unlock:
    4005             :         mutex_unlock(&wq->mutex);
    4006             :         put_pwq_unlocked(old_pwq);
    4007             : }
    4008             : 
    4009          28 : static int alloc_and_link_pwqs(struct workqueue_struct *wq)
    4010             : {
    4011          28 :         bool highpri = wq->flags & WQ_HIGHPRI;
    4012             :         int cpu, ret;
    4013             : 
    4014          28 :         if (!(wq->flags & WQ_UNBOUND)) {
    4015          15 :                 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
    4016          15 :                 if (!wq->cpu_pwqs)
    4017             :                         return -ENOMEM;
    4018             : 
    4019          15 :                 for_each_possible_cpu(cpu) {
    4020             :                         struct pool_workqueue *pwq =
    4021          15 :                                 per_cpu_ptr(wq->cpu_pwqs, cpu);
    4022             :                         struct worker_pool *cpu_pools =
    4023             :                                 per_cpu(cpu_worker_pools, cpu);
    4024             : 
    4025          15 :                         init_pwq(pwq, wq, &cpu_pools[highpri]);
    4026             : 
    4027          15 :                         mutex_lock(&wq->mutex);
    4028          15 :                         link_pwq(pwq);
    4029          15 :                         mutex_unlock(&wq->mutex);
    4030             :                 }
    4031             :                 return 0;
    4032          13 :         } else if (wq->flags & __WQ_ORDERED) {
    4033           8 :                 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
    4034             :                 /* there should only be single pwq for ordering guarantee */
    4035             :                 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
    4036             :                               wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
    4037             :                      "ordering guarantee broken for workqueue %s\n", wq->name);
    4038           8 :                 return ret;
    4039             :         } else {
    4040           5 :                 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
    4041             :         }
    4042             : }
    4043             : 
    4044          28 : static int wq_clamp_max_active(int max_active, unsigned int flags,
    4045             :                                const char *name)
    4046             : {
    4047             :         int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
    4048             : 
    4049          28 :         if (max_active < 1 || max_active > lim)
    4050           0 :                 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
    4051             :                         max_active, name, 1, lim);
    4052             : 
    4053          28 :         return clamp_val(max_active, 1, lim);
    4054             : }
    4055             : 
    4056          28 : struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
    4057             :                                                unsigned int flags,
    4058             :                                                int max_active,
    4059             :                                                struct lock_class_key *key,
    4060             :                                                const char *lock_name, ...)
    4061             : {
    4062             :         size_t tbl_size = 0;
    4063             :         va_list args;
    4064             :         struct workqueue_struct *wq;
    4065             :         struct pool_workqueue *pwq;
    4066             : 
    4067             :         /* see the comment above the definition of WQ_POWER_EFFICIENT */
    4068          28 :         if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
    4069           0 :                 flags |= WQ_UNBOUND;
    4070             : 
    4071             :         /* allocate wq and format name */
    4072          28 :         if (flags & WQ_UNBOUND)
    4073             :                 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
    4074             : 
    4075          28 :         wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
    4076          28 :         if (!wq)
    4077             :                 return NULL;
    4078             : 
    4079          28 :         if (flags & WQ_UNBOUND) {
    4080          13 :                 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
    4081          13 :                 if (!wq->unbound_attrs)
    4082             :                         goto err_free_wq;
    4083             :         }
    4084             : 
    4085          28 :         va_start(args, lock_name);
    4086          28 :         vsnprintf(wq->name, sizeof(wq->name), fmt, args);
    4087          28 :         va_end(args);
    4088             : 
    4089          28 :         max_active = max_active ?: WQ_DFL_ACTIVE;
    4090          28 :         max_active = wq_clamp_max_active(max_active, flags, wq->name);
    4091             : 
    4092             :         /* init wq */
    4093          28 :         wq->flags = flags;
    4094          28 :         wq->saved_max_active = max_active;
    4095          28 :         mutex_init(&wq->mutex);
    4096          28 :         atomic_set(&wq->nr_pwqs_to_flush, 0);
    4097          28 :         INIT_LIST_HEAD(&wq->pwqs);
    4098          28 :         INIT_LIST_HEAD(&wq->flusher_queue);
    4099          28 :         INIT_LIST_HEAD(&wq->flusher_overflow);
    4100          28 :         INIT_LIST_HEAD(&wq->maydays);
    4101             : 
    4102             :         lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
    4103          28 :         INIT_LIST_HEAD(&wq->list);
    4104             : 
    4105          28 :         if (alloc_and_link_pwqs(wq) < 0)
    4106             :                 goto err_free_wq;
    4107             : 
    4108             :         /*
    4109             :          * Workqueues which may be used during memory reclaim should
    4110             :          * have a rescuer to guarantee forward progress.
    4111             :          */
    4112          28 :         if (flags & WQ_MEM_RECLAIM) {
    4113             :                 struct worker *rescuer;
    4114             : 
    4115          15 :                 rescuer = alloc_worker(NUMA_NO_NODE);
    4116          15 :                 if (!rescuer)
    4117             :                         goto err_destroy;
    4118             : 
    4119          15 :                 rescuer->rescue_wq = wq;
    4120          15 :                 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
    4121             :                                                wq->name);
    4122          15 :                 if (IS_ERR(rescuer->task)) {
    4123           0 :                         kfree(rescuer);
    4124           0 :                         goto err_destroy;
    4125             :                 }
    4126             : 
    4127          15 :                 wq->rescuer = rescuer;
    4128          15 :                 rescuer->task->flags |= PF_NO_SETAFFINITY;
    4129          15 :                 wake_up_process(rescuer->task);
    4130             :         }
    4131             : 
    4132          28 :         if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
    4133             :                 goto err_destroy;
    4134             : 
    4135             :         /*
    4136             :          * wq_pool_mutex protects global freeze state and workqueues list.
    4137             :          * Grab it, adjust max_active and add the new @wq to workqueues
    4138             :          * list.
    4139             :          */
    4140          28 :         mutex_lock(&wq_pool_mutex);
    4141             : 
    4142          28 :         mutex_lock(&wq->mutex);
    4143          56 :         for_each_pwq(pwq, wq)
    4144          28 :                 pwq_adjust_max_active(pwq);
    4145          28 :         mutex_unlock(&wq->mutex);
    4146             : 
    4147             :         list_add(&wq->list, &workqueues);
    4148             : 
    4149          28 :         mutex_unlock(&wq_pool_mutex);
    4150             : 
    4151          28 :         return wq;
    4152             : 
    4153             : err_free_wq:
    4154           0 :         free_workqueue_attrs(wq->unbound_attrs);
    4155           0 :         kfree(wq);
    4156           0 :         return NULL;
    4157             : err_destroy:
    4158           0 :         destroy_workqueue(wq);
    4159           0 :         return NULL;
    4160             : }
    4161             : EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
    4162             : 
    4163             : /**
    4164             :  * destroy_workqueue - safely terminate a workqueue
    4165             :  * @wq: target workqueue
    4166             :  *
    4167             :  * Safely destroy a workqueue. All work currently pending will be done first.
    4168             :  */
    4169           0 : void destroy_workqueue(struct workqueue_struct *wq)
    4170             : {
    4171             :         struct pool_workqueue *pwq;
    4172             :         int node;
    4173             : 
    4174             :         /* drain it before proceeding with destruction */
    4175           0 :         drain_workqueue(wq);
    4176             : 
    4177             :         /* sanity checks */
    4178           0 :         mutex_lock(&wq->mutex);
    4179           0 :         for_each_pwq(pwq, wq) {
    4180             :                 int i;
    4181             : 
    4182           0 :                 for (i = 0; i < WORK_NR_COLORS; i++) {
    4183           0 :                         if (WARN_ON(pwq->nr_in_flight[i])) {
    4184           0 :                                 mutex_unlock(&wq->mutex);
    4185           0 :                                 return;
    4186             :                         }
    4187             :                 }
    4188             : 
    4189           0 :                 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
    4190           0 :                     WARN_ON(pwq->nr_active) ||
    4191           0 :                     WARN_ON(!list_empty(&pwq->delayed_works))) {
    4192           0 :                         mutex_unlock(&wq->mutex);
    4193           0 :                         return;
    4194             :                 }
    4195             :         }
    4196           0 :         mutex_unlock(&wq->mutex);
    4197             : 
    4198             :         /*
    4199             :          * wq list is used to freeze wq, remove from list after
    4200             :          * flushing is complete in case freeze races us.
    4201             :          */
    4202           0 :         mutex_lock(&wq_pool_mutex);
    4203           0 :         list_del_init(&wq->list);
    4204           0 :         mutex_unlock(&wq_pool_mutex);
    4205             : 
    4206             :         workqueue_sysfs_unregister(wq);
    4207             : 
    4208           0 :         if (wq->rescuer) {
    4209           0 :                 kthread_stop(wq->rescuer->task);
    4210           0 :                 kfree(wq->rescuer);
    4211           0 :                 wq->rescuer = NULL;
    4212             :         }
    4213             : 
    4214           0 :         if (!(wq->flags & WQ_UNBOUND)) {
    4215             :                 /*
    4216             :                  * The base ref is never dropped on per-cpu pwqs.  Directly
    4217             :                  * free the pwqs and wq.
    4218             :                  */
    4219           0 :                 free_percpu(wq->cpu_pwqs);
    4220           0 :                 kfree(wq);
    4221             :         } else {
    4222             :                 /*
    4223             :                  * We're the sole accessor of @wq at this point.  Directly
    4224             :                  * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
    4225             :                  * @wq will be freed when the last pwq is released.
    4226             :                  */
    4227           0 :                 for_each_node(node) {
    4228           0 :                         pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4229           0 :                         RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
    4230           0 :                         put_pwq_unlocked(pwq);
    4231             :                 }
    4232             : 
    4233             :                 /*
    4234             :                  * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
    4235             :                  * put.  Don't access it afterwards.
    4236             :                  */
    4237           0 :                 pwq = wq->dfl_pwq;
    4238           0 :                 wq->dfl_pwq = NULL;
    4239           0 :                 put_pwq_unlocked(pwq);
    4240             :         }
    4241             : }
    4242             : EXPORT_SYMBOL_GPL(destroy_workqueue);
    4243             : 
    4244             : /**
    4245             :  * workqueue_set_max_active - adjust max_active of a workqueue
    4246             :  * @wq: target workqueue
    4247             :  * @max_active: new max_active value.
    4248             :  *
    4249             :  * Set max_active of @wq to @max_active.
    4250             :  *
    4251             :  * CONTEXT:
    4252             :  * Don't call from IRQ context.
    4253             :  */
    4254           0 : void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
    4255             : {
    4256             :         struct pool_workqueue *pwq;
    4257             : 
    4258             :         /* disallow meddling with max_active for ordered workqueues */
    4259           0 :         if (WARN_ON(wq->flags & __WQ_ORDERED))
    4260           0 :                 return;
    4261             : 
    4262           0 :         max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
    4263             : 
    4264           0 :         mutex_lock(&wq->mutex);
    4265             : 
    4266           0 :         wq->saved_max_active = max_active;
    4267             : 
    4268           0 :         for_each_pwq(pwq, wq)
    4269           0 :                 pwq_adjust_max_active(pwq);
    4270             : 
    4271           0 :         mutex_unlock(&wq->mutex);
    4272             : }
    4273             : EXPORT_SYMBOL_GPL(workqueue_set_max_active);
    4274             : 
    4275             : /**
    4276             :  * current_is_workqueue_rescuer - is %current workqueue rescuer?
    4277             :  *
    4278             :  * Determine whether %current is a workqueue rescuer.  Can be used from
    4279             :  * work functions to determine whether it's being run off the rescuer task.
    4280             :  *
    4281             :  * Return: %true if %current is a workqueue rescuer. %false otherwise.
    4282             :  */
    4283         238 : bool current_is_workqueue_rescuer(void)
    4284             : {
    4285             :         struct worker *worker = current_wq_worker();
    4286             : 
    4287         238 :         return worker && worker->rescue_wq;
    4288             : }
    4289             : 
    4290             : /**
    4291             :  * workqueue_congested - test whether a workqueue is congested
    4292             :  * @cpu: CPU in question
    4293             :  * @wq: target workqueue
    4294             :  *
    4295             :  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
    4296             :  * no synchronization around this function and the test result is
    4297             :  * unreliable and only useful as advisory hints or for debugging.
    4298             :  *
    4299             :  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
    4300             :  * Note that both per-cpu and unbound workqueues may be associated with
    4301             :  * multiple pool_workqueues which have separate congested states.  A
    4302             :  * workqueue being congested on one CPU doesn't mean the workqueue is also
    4303             :  * contested on other CPUs / NUMA nodes.
    4304             :  *
    4305             :  * Return:
    4306             :  * %true if congested, %false otherwise.
    4307             :  */
    4308           0 : bool workqueue_congested(int cpu, struct workqueue_struct *wq)
    4309             : {
    4310             :         struct pool_workqueue *pwq;
    4311             :         bool ret;
    4312             : 
    4313             :         rcu_read_lock_sched();
    4314             : 
    4315             :         if (cpu == WORK_CPU_UNBOUND)
    4316             :                 cpu = smp_processor_id();
    4317             : 
    4318           0 :         if (!(wq->flags & WQ_UNBOUND))
    4319           0 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    4320             :         else
    4321             :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    4322             : 
    4323           0 :         ret = !list_empty(&pwq->delayed_works);
    4324             :         rcu_read_unlock_sched();
    4325             : 
    4326           0 :         return ret;
    4327             : }
    4328             : EXPORT_SYMBOL_GPL(workqueue_congested);
    4329             : 
    4330             : /**
    4331             :  * work_busy - test whether a work is currently pending or running
    4332             :  * @work: the work to be tested
    4333             :  *
    4334             :  * Test whether @work is currently pending or running.  There is no
    4335             :  * synchronization around this function and the test result is
    4336             :  * unreliable and only useful as advisory hints or for debugging.
    4337             :  *
    4338             :  * Return:
    4339             :  * OR'd bitmask of WORK_BUSY_* bits.
    4340             :  */
    4341           0 : unsigned int work_busy(struct work_struct *work)
    4342             : {
    4343             :         struct worker_pool *pool;
    4344             :         unsigned long flags;
    4345             :         unsigned int ret = 0;
    4346             : 
    4347           0 :         if (work_pending(work))
    4348             :                 ret |= WORK_BUSY_PENDING;
    4349             : 
    4350             :         local_irq_save(flags);
    4351           0 :         pool = get_work_pool(work);
    4352           0 :         if (pool) {
    4353             :                 spin_lock(&pool->lock);
    4354           0 :                 if (find_worker_executing_work(pool, work))
    4355           0 :                         ret |= WORK_BUSY_RUNNING;
    4356             :                 spin_unlock(&pool->lock);
    4357             :         }
    4358           0 :         local_irq_restore(flags);
    4359             : 
    4360           0 :         return ret;
    4361             : }
    4362             : EXPORT_SYMBOL_GPL(work_busy);
    4363             : 
    4364             : /**
    4365             :  * set_worker_desc - set description for the current work item
    4366             :  * @fmt: printf-style format string
    4367             :  * @...: arguments for the format string
    4368             :  *
    4369             :  * This function can be called by a running work function to describe what
    4370             :  * the work item is about.  If the worker task gets dumped, this
    4371             :  * information will be printed out together to help debugging.  The
    4372             :  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
    4373             :  */
    4374         238 : void set_worker_desc(const char *fmt, ...)
    4375             : {
    4376             :         struct worker *worker = current_wq_worker();
    4377             :         va_list args;
    4378             : 
    4379         238 :         if (worker) {
    4380         238 :                 va_start(args, fmt);
    4381         238 :                 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
    4382         238 :                 va_end(args);
    4383         238 :                 worker->desc_valid = true;
    4384             :         }
    4385         238 : }
    4386             : 
    4387             : /**
    4388             :  * print_worker_info - print out worker information and description
    4389             :  * @log_lvl: the log level to use when printing
    4390             :  * @task: target task
    4391             :  *
    4392             :  * If @task is a worker and currently executing a work item, print out the
    4393             :  * name of the workqueue being serviced and worker description set with
    4394             :  * set_worker_desc() by the currently executing work item.
    4395             :  *
    4396             :  * This function can be safely called on any task as long as the
    4397             :  * task_struct itself is accessible.  While safe, this function isn't
    4398             :  * synchronized and may print out mixups or garbages of limited length.
    4399             :  */
    4400           0 : void print_worker_info(const char *log_lvl, struct task_struct *task)
    4401             : {
    4402           0 :         work_func_t *fn = NULL;
    4403           0 :         char name[WQ_NAME_LEN] = { };
    4404           0 :         char desc[WORKER_DESC_LEN] = { };
    4405           0 :         struct pool_workqueue *pwq = NULL;
    4406           0 :         struct workqueue_struct *wq = NULL;
    4407           0 :         bool desc_valid = false;
    4408             :         struct worker *worker;
    4409             : 
    4410           0 :         if (!(task->flags & PF_WQ_WORKER))
    4411           0 :                 return;
    4412             : 
    4413             :         /*
    4414             :          * This function is called without any synchronization and @task
    4415             :          * could be in any state.  Be careful with dereferences.
    4416             :          */
    4417           0 :         worker = probe_kthread_data(task);
    4418             : 
    4419             :         /*
    4420             :          * Carefully copy the associated workqueue's workfn and name.  Keep
    4421             :          * the original last '\0' in case the original contains garbage.
    4422             :          */
    4423           0 :         probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
    4424           0 :         probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
    4425           0 :         probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
    4426           0 :         probe_kernel_read(name, wq->name, sizeof(name) - 1);
    4427             : 
    4428             :         /* copy worker description */
    4429           0 :         probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
    4430           0 :         if (desc_valid)
    4431           0 :                 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
    4432             : 
    4433           0 :         if (fn || name[0] || desc[0]) {
    4434           0 :                 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
    4435           0 :                 if (desc[0])
    4436           0 :                         pr_cont(" (%s)", desc);
    4437           0 :                 pr_cont("\n");
    4438             :         }
    4439             : }
    4440             : 
    4441             : /*
    4442             :  * CPU hotplug.
    4443             :  *
    4444             :  * There are two challenges in supporting CPU hotplug.  Firstly, there
    4445             :  * are a lot of assumptions on strong associations among work, pwq and
    4446             :  * pool which make migrating pending and scheduled works very
    4447             :  * difficult to implement without impacting hot paths.  Secondly,
    4448             :  * worker pools serve mix of short, long and very long running works making
    4449             :  * blocked draining impractical.
    4450             :  *
    4451             :  * This is solved by allowing the pools to be disassociated from the CPU
    4452             :  * running as an unbound one and allowing it to be reattached later if the
    4453             :  * cpu comes back online.
    4454             :  */
    4455             : 
    4456             : static void wq_unbind_fn(struct work_struct *work)
    4457             : {
    4458             :         int cpu = smp_processor_id();
    4459             :         struct worker_pool *pool;
    4460             :         struct worker *worker;
    4461             : 
    4462             :         for_each_cpu_worker_pool(pool, cpu) {
    4463             :                 mutex_lock(&pool->attach_mutex);
    4464             :                 spin_lock_irq(&pool->lock);
    4465             : 
    4466             :                 /*
    4467             :                  * We've blocked all attach/detach operations. Make all workers
    4468             :                  * unbound and set DISASSOCIATED.  Before this, all workers
    4469             :                  * except for the ones which are still executing works from
    4470             :                  * before the last CPU down must be on the cpu.  After
    4471             :                  * this, they may become diasporas.
    4472             :                  */
    4473             :                 for_each_pool_worker(worker, pool)
    4474             :                         worker->flags |= WORKER_UNBOUND;
    4475             : 
    4476             :                 pool->flags |= POOL_DISASSOCIATED;
    4477             : 
    4478             :                 spin_unlock_irq(&pool->lock);
    4479             :                 mutex_unlock(&pool->attach_mutex);
    4480             : 
    4481             :                 /*
    4482             :                  * Call schedule() so that we cross rq->lock and thus can
    4483             :                  * guarantee sched callbacks see the %WORKER_UNBOUND flag.
    4484             :                  * This is necessary as scheduler callbacks may be invoked
    4485             :                  * from other cpus.
    4486             :                  */
    4487             :                 schedule();
    4488             : 
    4489             :                 /*
    4490             :                  * Sched callbacks are disabled now.  Zap nr_running.
    4491             :                  * After this, nr_running stays zero and need_more_worker()
    4492             :                  * and keep_working() are always true as long as the
    4493             :                  * worklist is not empty.  This pool now behaves as an
    4494             :                  * unbound (in terms of concurrency management) pool which
    4495             :                  * are served by workers tied to the pool.
    4496             :                  */
    4497             :                 atomic_set(&pool->nr_running, 0);
    4498             : 
    4499             :                 /*
    4500             :                  * With concurrency management just turned off, a busy
    4501             :                  * worker blocking could lead to lengthy stalls.  Kick off
    4502             :                  * unbound chain execution of currently pending work items.
    4503             :                  */
    4504             :                 spin_lock_irq(&pool->lock);
    4505             :                 wake_up_worker(pool);
    4506             :                 spin_unlock_irq(&pool->lock);
    4507             :         }
    4508             : }
    4509             : 
    4510             : /**
    4511             :  * rebind_workers - rebind all workers of a pool to the associated CPU
    4512             :  * @pool: pool of interest
    4513             :  *
    4514             :  * @pool->cpu is coming online.  Rebind all workers to the CPU.
    4515             :  */
    4516             : static void rebind_workers(struct worker_pool *pool)
    4517             : {
    4518             :         struct worker *worker;
    4519             : 
    4520             :         lockdep_assert_held(&pool->attach_mutex);
    4521             : 
    4522             :         /*
    4523             :          * Restore CPU affinity of all workers.  As all idle workers should
    4524             :          * be on the run-queue of the associated CPU before any local
    4525             :          * wake-ups for concurrency management happen, restore CPU affinty
    4526             :          * of all workers first and then clear UNBOUND.  As we're called
    4527             :          * from CPU_ONLINE, the following shouldn't fail.
    4528             :          */
    4529             :         for_each_pool_worker(worker, pool)
    4530             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
    4531             :                                                   pool->attrs->cpumask) < 0);
    4532             : 
    4533             :         spin_lock_irq(&pool->lock);
    4534             :         pool->flags &= ~POOL_DISASSOCIATED;
    4535             : 
    4536             :         for_each_pool_worker(worker, pool) {
    4537             :                 unsigned int worker_flags = worker->flags;
    4538             : 
    4539             :                 /*
    4540             :                  * A bound idle worker should actually be on the runqueue
    4541             :                  * of the associated CPU for local wake-ups targeting it to
    4542             :                  * work.  Kick all idle workers so that they migrate to the
    4543             :                  * associated CPU.  Doing this in the same loop as
    4544             :                  * replacing UNBOUND with REBOUND is safe as no worker will
    4545             :                  * be bound before @pool->lock is released.
    4546             :                  */
    4547             :                 if (worker_flags & WORKER_IDLE)
    4548             :                         wake_up_process(worker->task);
    4549             : 
    4550             :                 /*
    4551             :                  * We want to clear UNBOUND but can't directly call
    4552             :                  * worker_clr_flags() or adjust nr_running.  Atomically
    4553             :                  * replace UNBOUND with another NOT_RUNNING flag REBOUND.
    4554             :                  * @worker will clear REBOUND using worker_clr_flags() when
    4555             :                  * it initiates the next execution cycle thus restoring
    4556             :                  * concurrency management.  Note that when or whether
    4557             :                  * @worker clears REBOUND doesn't affect correctness.
    4558             :                  *
    4559             :                  * ACCESS_ONCE() is necessary because @worker->flags may be
    4560             :                  * tested without holding any lock in
    4561             :                  * wq_worker_waking_up().  Without it, NOT_RUNNING test may
    4562             :                  * fail incorrectly leading to premature concurrency
    4563             :                  * management operations.
    4564             :                  */
    4565             :                 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
    4566             :                 worker_flags |= WORKER_REBOUND;
    4567             :                 worker_flags &= ~WORKER_UNBOUND;
    4568             :                 ACCESS_ONCE(worker->flags) = worker_flags;
    4569             :         }
    4570             : 
    4571             :         spin_unlock_irq(&pool->lock);
    4572             : }
    4573             : 
    4574             : /**
    4575             :  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
    4576             :  * @pool: unbound pool of interest
    4577             :  * @cpu: the CPU which is coming up
    4578             :  *
    4579             :  * An unbound pool may end up with a cpumask which doesn't have any online
    4580             :  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
    4581             :  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
    4582             :  * online CPU before, cpus_allowed of all its workers should be restored.
    4583             :  */
    4584             : static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
    4585             : {
    4586             :         static cpumask_t cpumask;
    4587             :         struct worker *worker;
    4588             : 
    4589             :         lockdep_assert_held(&pool->attach_mutex);
    4590             : 
    4591             :         /* is @cpu allowed for @pool? */
    4592             :         if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
    4593             :                 return;
    4594             : 
    4595             :         /* is @cpu the only online CPU? */
    4596             :         cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
    4597             :         if (cpumask_weight(&cpumask) != 1)
    4598             :                 return;
    4599             : 
    4600             :         /* as we're called from CPU_ONLINE, the following shouldn't fail */
    4601             :         for_each_pool_worker(worker, pool)
    4602             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
    4603             :                                                   pool->attrs->cpumask) < 0);
    4604             : }
    4605             : 
    4606             : /*
    4607             :  * Workqueues should be brought up before normal priority CPU notifiers.
    4608             :  * This will be registered high priority CPU notifier.
    4609             :  */
    4610             : static int workqueue_cpu_up_callback(struct notifier_block *nfb,
    4611             :                                                unsigned long action,
    4612             :                                                void *hcpu)
    4613             : {
    4614             :         int cpu = (unsigned long)hcpu;
    4615             :         struct worker_pool *pool;
    4616             :         struct workqueue_struct *wq;
    4617             :         int pi;
    4618             : 
    4619             :         switch (action & ~CPU_TASKS_FROZEN) {
    4620             :         case CPU_UP_PREPARE:
    4621             :                 for_each_cpu_worker_pool(pool, cpu) {
    4622             :                         if (pool->nr_workers)
    4623             :                                 continue;
    4624             :                         if (!create_worker(pool))
    4625             :                                 return NOTIFY_BAD;
    4626             :                 }
    4627             :                 break;
    4628             : 
    4629             :         case CPU_DOWN_FAILED:
    4630             :         case CPU_ONLINE:
    4631             :                 mutex_lock(&wq_pool_mutex);
    4632             : 
    4633             :                 for_each_pool(pool, pi) {
    4634             :                         mutex_lock(&pool->attach_mutex);
    4635             : 
    4636             :                         if (pool->cpu == cpu)
    4637             :                                 rebind_workers(pool);
    4638             :                         else if (pool->cpu < 0)
    4639             :                                 restore_unbound_workers_cpumask(pool, cpu);
    4640             : 
    4641             :                         mutex_unlock(&pool->attach_mutex);
    4642             :                 }
    4643             : 
    4644             :                 /* update NUMA affinity of unbound workqueues */
    4645             :                 list_for_each_entry(wq, &workqueues, list)
    4646             :                         wq_update_unbound_numa(wq, cpu, true);
    4647             : 
    4648             :                 mutex_unlock(&wq_pool_mutex);
    4649             :                 break;
    4650             :         }
    4651             :         return NOTIFY_OK;
    4652             : }
    4653             : 
    4654             : /*
    4655             :  * Workqueues should be brought down after normal priority CPU notifiers.
    4656             :  * This will be registered as low priority CPU notifier.
    4657             :  */
    4658             : static int workqueue_cpu_down_callback(struct notifier_block *nfb,
    4659             :                                                  unsigned long action,
    4660             :                                                  void *hcpu)
    4661             : {
    4662             :         int cpu = (unsigned long)hcpu;
    4663             :         struct work_struct unbind_work;
    4664             :         struct workqueue_struct *wq;
    4665             : 
    4666             :         switch (action & ~CPU_TASKS_FROZEN) {
    4667             :         case CPU_DOWN_PREPARE:
    4668             :                 /* unbinding per-cpu workers should happen on the local CPU */
    4669             :                 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
    4670             :                 queue_work_on(cpu, system_highpri_wq, &unbind_work);
    4671             : 
    4672             :                 /* update NUMA affinity of unbound workqueues */
    4673             :                 mutex_lock(&wq_pool_mutex);
    4674             :                 list_for_each_entry(wq, &workqueues, list)
    4675             :                         wq_update_unbound_numa(wq, cpu, false);
    4676             :                 mutex_unlock(&wq_pool_mutex);
    4677             : 
    4678             :                 /* wait for per-cpu unbinding to finish */
    4679             :                 flush_work(&unbind_work);
    4680             :                 destroy_work_on_stack(&unbind_work);
    4681             :                 break;
    4682             :         }
    4683             :         return NOTIFY_OK;
    4684             : }
    4685             : 
    4686             : #ifdef CONFIG_SMP
    4687             : 
    4688             : struct work_for_cpu {
    4689             :         struct work_struct work;
    4690             :         long (*fn)(void *);
    4691             :         void *arg;
    4692             :         long ret;
    4693             : };
    4694             : 
    4695             : static void work_for_cpu_fn(struct work_struct *work)
    4696             : {
    4697             :         struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
    4698             : 
    4699             :         wfc->ret = wfc->fn(wfc->arg);
    4700             : }
    4701             : 
    4702             : /**
    4703             :  * work_on_cpu - run a function in user context on a particular cpu
    4704             :  * @cpu: the cpu to run on
    4705             :  * @fn: the function to run
    4706             :  * @arg: the function arg
    4707             :  *
    4708             :  * It is up to the caller to ensure that the cpu doesn't go offline.
    4709             :  * The caller must not hold any locks which would prevent @fn from completing.
    4710             :  *
    4711             :  * Return: The value @fn returns.
    4712             :  */
    4713             : long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
    4714             : {
    4715             :         struct work_for_cpu wfc = { .fn = fn, .arg = arg };
    4716             : 
    4717             :         INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
    4718             :         schedule_work_on(cpu, &wfc.work);
    4719             :         flush_work(&wfc.work);
    4720             :         destroy_work_on_stack(&wfc.work);
    4721             :         return wfc.ret;
    4722             : }
    4723             : EXPORT_SYMBOL_GPL(work_on_cpu);
    4724             : #endif /* CONFIG_SMP */
    4725             : 
    4726             : #ifdef CONFIG_FREEZER
    4727             : 
    4728             : /**
    4729             :  * freeze_workqueues_begin - begin freezing workqueues
    4730             :  *
    4731             :  * Start freezing workqueues.  After this function returns, all freezable
    4732             :  * workqueues will queue new works to their delayed_works list instead of
    4733             :  * pool->worklist.
    4734             :  *
    4735             :  * CONTEXT:
    4736             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    4737             :  */
    4738           0 : void freeze_workqueues_begin(void)
    4739             : {
    4740             :         struct workqueue_struct *wq;
    4741             :         struct pool_workqueue *pwq;
    4742             : 
    4743           0 :         mutex_lock(&wq_pool_mutex);
    4744             : 
    4745             :         WARN_ON_ONCE(workqueue_freezing);
    4746           0 :         workqueue_freezing = true;
    4747             : 
    4748           0 :         list_for_each_entry(wq, &workqueues, list) {
    4749           0 :                 mutex_lock(&wq->mutex);
    4750           0 :                 for_each_pwq(pwq, wq)
    4751           0 :                         pwq_adjust_max_active(pwq);
    4752           0 :                 mutex_unlock(&wq->mutex);
    4753             :         }
    4754             : 
    4755           0 :         mutex_unlock(&wq_pool_mutex);
    4756           0 : }
    4757             : 
    4758             : /**
    4759             :  * freeze_workqueues_busy - are freezable workqueues still busy?
    4760             :  *
    4761             :  * Check whether freezing is complete.  This function must be called
    4762             :  * between freeze_workqueues_begin() and thaw_workqueues().
    4763             :  *
    4764             :  * CONTEXT:
    4765             :  * Grabs and releases wq_pool_mutex.
    4766             :  *
    4767             :  * Return:
    4768             :  * %true if some freezable workqueues are still busy.  %false if freezing
    4769             :  * is complete.
    4770             :  */
    4771           0 : bool freeze_workqueues_busy(void)
    4772             : {
    4773             :         bool busy = false;
    4774             :         struct workqueue_struct *wq;
    4775             :         struct pool_workqueue *pwq;
    4776             : 
    4777           0 :         mutex_lock(&wq_pool_mutex);
    4778             : 
    4779             :         WARN_ON_ONCE(!workqueue_freezing);
    4780             : 
    4781           0 :         list_for_each_entry(wq, &workqueues, list) {
    4782           0 :                 if (!(wq->flags & WQ_FREEZABLE))
    4783           0 :                         continue;
    4784             :                 /*
    4785             :                  * nr_active is monotonically decreasing.  It's safe
    4786             :                  * to peek without lock.
    4787             :                  */
    4788             :                 rcu_read_lock_sched();
    4789           0 :                 for_each_pwq(pwq, wq) {
    4790             :                         WARN_ON_ONCE(pwq->nr_active < 0);
    4791           0 :                         if (pwq->nr_active) {
    4792             :                                 busy = true;
    4793             :                                 rcu_read_unlock_sched();
    4794             :                                 goto out_unlock;
    4795             :                         }
    4796             :                 }
    4797             :                 rcu_read_unlock_sched();
    4798             :         }
    4799             : out_unlock:
    4800           0 :         mutex_unlock(&wq_pool_mutex);
    4801           0 :         return busy;
    4802             : }
    4803             : 
    4804             : /**
    4805             :  * thaw_workqueues - thaw workqueues
    4806             :  *
    4807             :  * Thaw workqueues.  Normal queueing is restored and all collected
    4808             :  * frozen works are transferred to their respective pool worklists.
    4809             :  *
    4810             :  * CONTEXT:
    4811             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    4812             :  */
    4813           0 : void thaw_workqueues(void)
    4814             : {
    4815             :         struct workqueue_struct *wq;
    4816             :         struct pool_workqueue *pwq;
    4817             : 
    4818           0 :         mutex_lock(&wq_pool_mutex);
    4819             : 
    4820           0 :         if (!workqueue_freezing)
    4821             :                 goto out_unlock;
    4822             : 
    4823           0 :         workqueue_freezing = false;
    4824             : 
    4825             :         /* restore max_active and repopulate worklist */
    4826           0 :         list_for_each_entry(wq, &workqueues, list) {
    4827           0 :                 mutex_lock(&wq->mutex);
    4828           0 :                 for_each_pwq(pwq, wq)
    4829           0 :                         pwq_adjust_max_active(pwq);
    4830           0 :                 mutex_unlock(&wq->mutex);
    4831             :         }
    4832             : 
    4833             : out_unlock:
    4834           0 :         mutex_unlock(&wq_pool_mutex);
    4835           0 : }
    4836             : #endif /* CONFIG_FREEZER */
    4837             : 
    4838             : static void __init wq_numa_init(void)
    4839             : {
    4840             :         cpumask_var_t *tbl;
    4841             :         int node, cpu;
    4842             : 
    4843             :         if (num_possible_nodes() <= 1)
    4844             :                 return;
    4845             : 
    4846             :         if (wq_disable_numa) {
    4847             :                 pr_info("workqueue: NUMA affinity support disabled\n");
    4848             :                 return;
    4849             :         }
    4850             : 
    4851             :         wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
    4852             :         BUG_ON(!wq_update_unbound_numa_attrs_buf);
    4853             : 
    4854             :         /*
    4855             :          * We want masks of possible CPUs of each node which isn't readily
    4856             :          * available.  Build one from cpu_to_node() which should have been
    4857             :          * fully initialized by now.
    4858             :          */
    4859             :         tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
    4860             :         BUG_ON(!tbl);
    4861             : 
    4862             :         for_each_node(node)
    4863             :                 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
    4864             :                                 node_online(node) ? node : NUMA_NO_NODE));
    4865             : 
    4866             :         for_each_possible_cpu(cpu) {
    4867             :                 node = cpu_to_node(cpu);
    4868             :                 if (WARN_ON(node == NUMA_NO_NODE)) {
    4869             :                         pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
    4870             :                         /* happens iff arch is bonkers, let's just proceed */
    4871             :                         return;
    4872             :                 }
    4873             :                 cpumask_set_cpu(cpu, tbl[node]);
    4874             :         }
    4875             : 
    4876             :         wq_numa_possible_cpumask = tbl;
    4877             :         wq_numa_enabled = true;
    4878             : }
    4879             : 
    4880           1 : static int __init init_workqueues(void)
    4881             : {
    4882           1 :         int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
    4883             :         int i, cpu;
    4884             : 
    4885             :         WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
    4886             : 
    4887           1 :         pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
    4888             : 
    4889             :         cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
    4890             :         hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
    4891             : 
    4892             :         wq_numa_init();
    4893             : 
    4894             :         /* initialize CPU pools */
    4895           2 :         for_each_possible_cpu(cpu) {
    4896             :                 struct worker_pool *pool;
    4897             : 
    4898             :                 i = 0;
    4899           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    4900           2 :                         BUG_ON(init_worker_pool(pool));
    4901           2 :                         pool->cpu = cpu;
    4902           2 :                         cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
    4903           2 :                         pool->attrs->nice = std_nice[i++];
    4904           2 :                         pool->node = cpu_to_node(cpu);
    4905             : 
    4906             :                         /* alloc pool ID */
    4907           2 :                         mutex_lock(&wq_pool_mutex);
    4908           2 :                         BUG_ON(worker_pool_assign_id(pool));
    4909           2 :                         mutex_unlock(&wq_pool_mutex);
    4910             :                 }
    4911             :         }
    4912             : 
    4913             :         /* create the initial worker */
    4914           1 :         for_each_online_cpu(cpu) {
    4915             :                 struct worker_pool *pool;
    4916             : 
    4917           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    4918           2 :                         pool->flags &= ~POOL_DISASSOCIATED;
    4919           2 :                         BUG_ON(!create_worker(pool));
    4920             :                 }
    4921             :         }
    4922             : 
    4923             :         /* create default unbound and ordered wq attrs */
    4924           2 :         for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
    4925             :                 struct workqueue_attrs *attrs;
    4926             : 
    4927           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
    4928           2 :                 attrs->nice = std_nice[i];
    4929           2 :                 unbound_std_wq_attrs[i] = attrs;
    4930             : 
    4931             :                 /*
    4932             :                  * An ordered wq should have only one pwq as ordering is
    4933             :                  * guaranteed by max_active which is enforced by pwqs.
    4934             :                  * Turn off NUMA so that dfl_pwq is used for all nodes.
    4935             :                  */
    4936           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
    4937           2 :                 attrs->nice = std_nice[i];
    4938           2 :                 attrs->no_numa = true;
    4939           2 :                 ordered_wq_attrs[i] = attrs;
    4940             :         }
    4941             : 
    4942           1 :         system_wq = alloc_workqueue("events", 0, 0);
    4943           1 :         system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
    4944           1 :         system_long_wq = alloc_workqueue("events_long", 0, 0);
    4945           1 :         system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
    4946             :                                             WQ_UNBOUND_MAX_ACTIVE);
    4947           1 :         system_freezable_wq = alloc_workqueue("events_freezable",
    4948             :                                               WQ_FREEZABLE, 0);
    4949           1 :         system_power_efficient_wq = alloc_workqueue("events_power_efficient",
    4950             :                                               WQ_POWER_EFFICIENT, 0);
    4951           1 :         system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
    4952             :                                               WQ_FREEZABLE | WQ_POWER_EFFICIENT,
    4953             :                                               0);
    4954             :         BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
    4955             :                !system_unbound_wq || !system_freezable_wq ||
    4956             :                !system_power_efficient_wq ||
    4957             :                !system_freezable_power_efficient_wq);
    4958           1 :         return 0;
    4959             : }
    4960             : early_initcall(init_workqueues);

Generated by: LCOV version 1.11