Line data Source code
1 : /*
2 : * linux/kernel/sys.c
3 : *
4 : * Copyright (C) 1991, 1992 Linus Torvalds
5 : */
6 :
7 : #include <linux/export.h>
8 : #include <linux/mm.h>
9 : #include <linux/utsname.h>
10 : #include <linux/mman.h>
11 : #include <linux/reboot.h>
12 : #include <linux/prctl.h>
13 : #include <linux/highuid.h>
14 : #include <linux/fs.h>
15 : #include <linux/kmod.h>
16 : #include <linux/perf_event.h>
17 : #include <linux/resource.h>
18 : #include <linux/kernel.h>
19 : #include <linux/workqueue.h>
20 : #include <linux/capability.h>
21 : #include <linux/device.h>
22 : #include <linux/key.h>
23 : #include <linux/times.h>
24 : #include <linux/posix-timers.h>
25 : #include <linux/security.h>
26 : #include <linux/dcookies.h>
27 : #include <linux/suspend.h>
28 : #include <linux/tty.h>
29 : #include <linux/signal.h>
30 : #include <linux/cn_proc.h>
31 : #include <linux/getcpu.h>
32 : #include <linux/task_io_accounting_ops.h>
33 : #include <linux/seccomp.h>
34 : #include <linux/cpu.h>
35 : #include <linux/personality.h>
36 : #include <linux/ptrace.h>
37 : #include <linux/fs_struct.h>
38 : #include <linux/file.h>
39 : #include <linux/mount.h>
40 : #include <linux/gfp.h>
41 : #include <linux/syscore_ops.h>
42 : #include <linux/version.h>
43 : #include <linux/ctype.h>
44 :
45 : #include <linux/compat.h>
46 : #include <linux/syscalls.h>
47 : #include <linux/kprobes.h>
48 : #include <linux/user_namespace.h>
49 : #include <linux/binfmts.h>
50 :
51 : #include <linux/sched.h>
52 : #include <linux/rcupdate.h>
53 : #include <linux/uidgid.h>
54 : #include <linux/cred.h>
55 :
56 : #include <linux/kmsg_dump.h>
57 : /* Move somewhere else to avoid recompiling? */
58 : #include <generated/utsrelease.h>
59 :
60 : #include <asm/uaccess.h>
61 : #include <asm/io.h>
62 : #include <asm/unistd.h>
63 :
64 : #ifndef SET_UNALIGN_CTL
65 : # define SET_UNALIGN_CTL(a, b) (-EINVAL)
66 : #endif
67 : #ifndef GET_UNALIGN_CTL
68 : # define GET_UNALIGN_CTL(a, b) (-EINVAL)
69 : #endif
70 : #ifndef SET_FPEMU_CTL
71 : # define SET_FPEMU_CTL(a, b) (-EINVAL)
72 : #endif
73 : #ifndef GET_FPEMU_CTL
74 : # define GET_FPEMU_CTL(a, b) (-EINVAL)
75 : #endif
76 : #ifndef SET_FPEXC_CTL
77 : # define SET_FPEXC_CTL(a, b) (-EINVAL)
78 : #endif
79 : #ifndef GET_FPEXC_CTL
80 : # define GET_FPEXC_CTL(a, b) (-EINVAL)
81 : #endif
82 : #ifndef GET_ENDIAN
83 : # define GET_ENDIAN(a, b) (-EINVAL)
84 : #endif
85 : #ifndef SET_ENDIAN
86 : # define SET_ENDIAN(a, b) (-EINVAL)
87 : #endif
88 : #ifndef GET_TSC_CTL
89 : # define GET_TSC_CTL(a) (-EINVAL)
90 : #endif
91 : #ifndef SET_TSC_CTL
92 : # define SET_TSC_CTL(a) (-EINVAL)
93 : #endif
94 : #ifndef MPX_ENABLE_MANAGEMENT
95 : # define MPX_ENABLE_MANAGEMENT(a) (-EINVAL)
96 : #endif
97 : #ifndef MPX_DISABLE_MANAGEMENT
98 : # define MPX_DISABLE_MANAGEMENT(a) (-EINVAL)
99 : #endif
100 :
101 : /*
102 : * this is where the system-wide overflow UID and GID are defined, for
103 : * architectures that now have 32-bit UID/GID but didn't in the past
104 : */
105 :
106 : int overflowuid = DEFAULT_OVERFLOWUID;
107 : int overflowgid = DEFAULT_OVERFLOWGID;
108 :
109 : EXPORT_SYMBOL(overflowuid);
110 : EXPORT_SYMBOL(overflowgid);
111 :
112 : /*
113 : * the same as above, but for filesystems which can only store a 16-bit
114 : * UID and GID. as such, this is needed on all architectures
115 : */
116 :
117 : int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
118 : int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
119 :
120 : EXPORT_SYMBOL(fs_overflowuid);
121 : EXPORT_SYMBOL(fs_overflowgid);
122 :
123 : /*
124 : * Returns true if current's euid is same as p's uid or euid,
125 : * or has CAP_SYS_NICE to p's user_ns.
126 : *
127 : * Called with rcu_read_lock, creds are safe
128 : */
129 10 : static bool set_one_prio_perm(struct task_struct *p)
130 : {
131 10 : const struct cred *cred = current_cred(), *pcred = __task_cred(p);
132 :
133 10 : if (uid_eq(pcred->uid, cred->euid) ||
134 : uid_eq(pcred->euid, cred->euid))
135 : return true;
136 0 : if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
137 : return true;
138 0 : return false;
139 : }
140 :
141 : /*
142 : * set the priority of a task
143 : * - the caller must hold the RCU read lock
144 : */
145 10 : static int set_one_prio(struct task_struct *p, int niceval, int error)
146 : {
147 : int no_nice;
148 :
149 10 : if (!set_one_prio_perm(p)) {
150 : error = -EPERM;
151 : goto out;
152 : }
153 10 : if (niceval < task_nice(p) && !can_nice(p, niceval)) {
154 : error = -EACCES;
155 : goto out;
156 : }
157 : no_nice = security_task_setnice(p, niceval);
158 10 : if (no_nice) {
159 : error = no_nice;
160 : goto out;
161 : }
162 10 : if (error == -ESRCH)
163 : error = 0;
164 10 : set_user_nice(p, niceval);
165 : out:
166 10 : return error;
167 : }
168 :
169 20 : SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
170 : {
171 : struct task_struct *g, *p;
172 : struct user_struct *user;
173 10 : const struct cred *cred = current_cred();
174 : int error = -EINVAL;
175 : struct pid *pgrp;
176 : kuid_t uid;
177 :
178 10 : if (which > PRIO_USER || which < PRIO_PROCESS)
179 : goto out;
180 :
181 : /* normalize: avoid signed division (rounding problems) */
182 : error = -ESRCH;
183 10 : if (niceval < MIN_NICE)
184 : niceval = MIN_NICE;
185 10 : if (niceval > MAX_NICE)
186 : niceval = MAX_NICE;
187 :
188 : rcu_read_lock();
189 10 : read_lock(&tasklist_lock);
190 10 : switch (which) {
191 : case PRIO_PROCESS:
192 10 : if (who)
193 0 : p = find_task_by_vpid(who);
194 : else
195 10 : p = current;
196 10 : if (p)
197 10 : error = set_one_prio(p, niceval, error);
198 : break;
199 : case PRIO_PGRP:
200 0 : if (who)
201 0 : pgrp = find_vpid(who);
202 : else
203 0 : pgrp = task_pgrp(current);
204 0 : do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
205 0 : error = set_one_prio(p, niceval, error);
206 0 : } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
207 : break;
208 : case PRIO_USER:
209 0 : uid = make_kuid(cred->user_ns, who);
210 0 : user = cred->user;
211 0 : if (!who)
212 0 : uid = cred->uid;
213 0 : else if (!uid_eq(uid, cred->uid)) {
214 0 : user = find_user(uid);
215 0 : if (!user)
216 : goto out_unlock; /* No processes for this user */
217 : }
218 0 : do_each_thread(g, p) {
219 0 : if (uid_eq(task_uid(p), uid))
220 0 : error = set_one_prio(p, niceval, error);
221 0 : } while_each_thread(g, p);
222 0 : if (!uid_eq(uid, cred->uid))
223 0 : free_uid(user); /* For find_user() */
224 : break;
225 : }
226 : out_unlock:
227 20 : read_unlock(&tasklist_lock);
228 : rcu_read_unlock();
229 : out:
230 : return error;
231 : }
232 :
233 : /*
234 : * Ugh. To avoid negative return values, "getpriority()" will
235 : * not return the normal nice-value, but a negated value that
236 : * has been offset by 20 (ie it returns 40..1 instead of -20..19)
237 : * to stay compatible.
238 : */
239 20 : SYSCALL_DEFINE2(getpriority, int, which, int, who)
240 : {
241 : struct task_struct *g, *p;
242 : struct user_struct *user;
243 10 : const struct cred *cred = current_cred();
244 : long niceval, retval = -ESRCH;
245 : struct pid *pgrp;
246 : kuid_t uid;
247 :
248 10 : if (which > PRIO_USER || which < PRIO_PROCESS)
249 : return -EINVAL;
250 :
251 : rcu_read_lock();
252 10 : read_lock(&tasklist_lock);
253 10 : switch (which) {
254 : case PRIO_PROCESS:
255 10 : if (who)
256 0 : p = find_task_by_vpid(who);
257 : else
258 10 : p = current;
259 10 : if (p) {
260 : niceval = nice_to_rlimit(task_nice(p));
261 10 : if (niceval > retval)
262 : retval = niceval;
263 : }
264 : break;
265 : case PRIO_PGRP:
266 0 : if (who)
267 0 : pgrp = find_vpid(who);
268 : else
269 0 : pgrp = task_pgrp(current);
270 0 : do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
271 : niceval = nice_to_rlimit(task_nice(p));
272 0 : if (niceval > retval)
273 : retval = niceval;
274 0 : } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
275 : break;
276 : case PRIO_USER:
277 0 : uid = make_kuid(cred->user_ns, who);
278 0 : user = cred->user;
279 0 : if (!who)
280 0 : uid = cred->uid;
281 0 : else if (!uid_eq(uid, cred->uid)) {
282 0 : user = find_user(uid);
283 0 : if (!user)
284 : goto out_unlock; /* No processes for this user */
285 : }
286 0 : do_each_thread(g, p) {
287 0 : if (uid_eq(task_uid(p), uid)) {
288 : niceval = nice_to_rlimit(task_nice(p));
289 0 : if (niceval > retval)
290 : retval = niceval;
291 : }
292 0 : } while_each_thread(g, p);
293 0 : if (!uid_eq(uid, cred->uid))
294 0 : free_uid(user); /* for find_user() */
295 : break;
296 : }
297 : out_unlock:
298 20 : read_unlock(&tasklist_lock);
299 : rcu_read_unlock();
300 :
301 : return retval;
302 : }
303 :
304 : /*
305 : * Unprivileged users may change the real gid to the effective gid
306 : * or vice versa. (BSD-style)
307 : *
308 : * If you set the real gid at all, or set the effective gid to a value not
309 : * equal to the real gid, then the saved gid is set to the new effective gid.
310 : *
311 : * This makes it possible for a setgid program to completely drop its
312 : * privileges, which is often a useful assertion to make when you are doing
313 : * a security audit over a program.
314 : *
315 : * The general idea is that a program which uses just setregid() will be
316 : * 100% compatible with BSD. A program which uses just setgid() will be
317 : * 100% compatible with POSIX with saved IDs.
318 : *
319 : * SMP: There are not races, the GIDs are checked only by filesystem
320 : * operations (as far as semantic preservation is concerned).
321 : */
322 144 : SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
323 : {
324 : struct user_namespace *ns = current_user_ns();
325 : const struct cred *old;
326 : struct cred *new;
327 : int retval;
328 : kgid_t krgid, kegid;
329 :
330 : krgid = make_kgid(ns, rgid);
331 : kegid = make_kgid(ns, egid);
332 :
333 72 : if ((rgid != (gid_t) -1) && !gid_valid(krgid))
334 : return -EINVAL;
335 72 : if ((egid != (gid_t) -1) && !gid_valid(kegid))
336 : return -EINVAL;
337 :
338 72 : new = prepare_creds();
339 72 : if (!new)
340 : return -ENOMEM;
341 72 : old = current_cred();
342 :
343 : retval = -EPERM;
344 72 : if (rgid != (gid_t) -1) {
345 2 : if (gid_eq(old->gid, krgid) ||
346 0 : gid_eq(old->egid, krgid) ||
347 0 : ns_capable(old->user_ns, CAP_SETGID))
348 2 : new->gid = krgid;
349 : else
350 : goto error;
351 : }
352 72 : if (egid != (gid_t) -1) {
353 71 : if (gid_eq(old->gid, kegid) ||
354 0 : gid_eq(old->egid, kegid) ||
355 0 : gid_eq(old->sgid, kegid) ||
356 0 : ns_capable(old->user_ns, CAP_SETGID))
357 71 : new->egid = kegid;
358 : else
359 : goto error;
360 : }
361 :
362 72 : if (rgid != (gid_t) -1 ||
363 70 : (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
364 2 : new->sgid = new->egid;
365 72 : new->fsgid = new->egid;
366 :
367 72 : return commit_creds(new);
368 :
369 : error:
370 0 : abort_creds(new);
371 : return retval;
372 : }
373 :
374 : /*
375 : * setgid() is implemented like SysV w/ SAVED_IDS
376 : *
377 : * SMP: Same implicit races as above.
378 : */
379 120 : SYSCALL_DEFINE1(setgid, gid_t, gid)
380 : {
381 : struct user_namespace *ns = current_user_ns();
382 : const struct cred *old;
383 : struct cred *new;
384 : int retval;
385 : kgid_t kgid;
386 :
387 : kgid = make_kgid(ns, gid);
388 60 : if (!gid_valid(kgid))
389 : return -EINVAL;
390 :
391 60 : new = prepare_creds();
392 60 : if (!new)
393 : return -ENOMEM;
394 60 : old = current_cred();
395 :
396 : retval = -EPERM;
397 60 : if (ns_capable(old->user_ns, CAP_SETGID))
398 50 : new->gid = new->egid = new->sgid = new->fsgid = kgid;
399 10 : else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
400 0 : new->egid = new->fsgid = kgid;
401 : else
402 : goto error;
403 :
404 50 : return commit_creds(new);
405 :
406 : error:
407 10 : abort_creds(new);
408 : return retval;
409 : }
410 :
411 : /*
412 : * change the user struct in a credentials set to match the new UID
413 : */
414 117 : static int set_user(struct cred *new)
415 : {
416 : struct user_struct *new_user;
417 :
418 117 : new_user = alloc_uid(new->uid);
419 117 : if (!new_user)
420 : return -EAGAIN;
421 :
422 : /*
423 : * We don't fail in case of NPROC limit excess here because too many
424 : * poorly written programs don't check set*uid() return code, assuming
425 : * it never fails if called by root. We may still enforce NPROC limit
426 : * for programs doing set*uid()+execve() by harmlessly deferring the
427 : * failure to the execve() stage.
428 : */
429 234 : if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
430 : new_user != INIT_USER)
431 0 : current->flags |= PF_NPROC_EXCEEDED;
432 : else
433 117 : current->flags &= ~PF_NPROC_EXCEEDED;
434 :
435 117 : free_uid(new->user);
436 117 : new->user = new_user;
437 : return 0;
438 : }
439 :
440 : /*
441 : * Unprivileged users may change the real uid to the effective uid
442 : * or vice versa. (BSD-style)
443 : *
444 : * If you set the real uid at all, or set the effective uid to a value not
445 : * equal to the real uid, then the saved uid is set to the new effective uid.
446 : *
447 : * This makes it possible for a setuid program to completely drop its
448 : * privileges, which is often a useful assertion to make when you are doing
449 : * a security audit over a program.
450 : *
451 : * The general idea is that a program which uses just setreuid() will be
452 : * 100% compatible with BSD. A program which uses just setuid() will be
453 : * 100% compatible with POSIX with saved IDs.
454 : */
455 138 : SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
456 : {
457 : struct user_namespace *ns = current_user_ns();
458 : const struct cred *old;
459 : struct cred *new;
460 : int retval;
461 : kuid_t kruid, keuid;
462 :
463 : kruid = make_kuid(ns, ruid);
464 : keuid = make_kuid(ns, euid);
465 :
466 69 : if ((ruid != (uid_t) -1) && !uid_valid(kruid))
467 : return -EINVAL;
468 69 : if ((euid != (uid_t) -1) && !uid_valid(keuid))
469 : return -EINVAL;
470 :
471 69 : new = prepare_creds();
472 69 : if (!new)
473 : return -ENOMEM;
474 69 : old = current_cred();
475 :
476 : retval = -EPERM;
477 69 : if (ruid != (uid_t) -1) {
478 1 : new->uid = kruid;
479 1 : if (!uid_eq(old->uid, kruid) &&
480 0 : !uid_eq(old->euid, kruid) &&
481 0 : !ns_capable(old->user_ns, CAP_SETUID))
482 : goto error;
483 : }
484 :
485 69 : if (euid != (uid_t) -1) {
486 69 : new->euid = keuid;
487 69 : if (!uid_eq(old->uid, keuid) &&
488 0 : !uid_eq(old->euid, keuid) &&
489 0 : !uid_eq(old->suid, keuid) &&
490 0 : !ns_capable(old->user_ns, CAP_SETUID))
491 : goto error;
492 : }
493 :
494 69 : if (!uid_eq(new->uid, old->uid)) {
495 0 : retval = set_user(new);
496 0 : if (retval < 0)
497 : goto error;
498 : }
499 69 : if (ruid != (uid_t) -1 ||
500 68 : (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
501 1 : new->suid = new->euid;
502 69 : new->fsuid = new->euid;
503 :
504 : retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
505 69 : if (retval < 0)
506 : goto error;
507 :
508 69 : return commit_creds(new);
509 :
510 : error:
511 0 : abort_creds(new);
512 : return retval;
513 : }
514 :
515 : /*
516 : * setuid() is implemented like SysV with SAVED_IDS
517 : *
518 : * Note that SAVED_ID's is deficient in that a setuid root program
519 : * like sendmail, for example, cannot set its uid to be a normal
520 : * user and then switch back, because if you're root, setuid() sets
521 : * the saved uid too. If you don't like this, blame the bright people
522 : * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
523 : * will allow a root program to temporarily drop privileges and be able to
524 : * regain them by swapping the real and effective uid.
525 : */
526 118 : SYSCALL_DEFINE1(setuid, uid_t, uid)
527 : {
528 : struct user_namespace *ns = current_user_ns();
529 : const struct cred *old;
530 : struct cred *new;
531 : int retval;
532 : kuid_t kuid;
533 :
534 : kuid = make_kuid(ns, uid);
535 59 : if (!uid_valid(kuid))
536 : return -EINVAL;
537 :
538 59 : new = prepare_creds();
539 59 : if (!new)
540 : return -ENOMEM;
541 59 : old = current_cred();
542 :
543 : retval = -EPERM;
544 59 : if (ns_capable(old->user_ns, CAP_SETUID)) {
545 40 : new->suid = new->uid = kuid;
546 40 : if (!uid_eq(kuid, old->uid)) {
547 34 : retval = set_user(new);
548 34 : if (retval < 0)
549 : goto error;
550 : }
551 19 : } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
552 : goto error;
553 : }
554 :
555 40 : new->fsuid = new->euid = kuid;
556 :
557 : retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
558 40 : if (retval < 0)
559 : goto error;
560 :
561 40 : return commit_creds(new);
562 :
563 : error:
564 19 : abort_creds(new);
565 : return retval;
566 : }
567 :
568 :
569 : /*
570 : * This function implements a generic ability to update ruid, euid,
571 : * and suid. This allows you to implement the 4.4 compatible seteuid().
572 : */
573 874 : SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
574 : {
575 : struct user_namespace *ns = current_user_ns();
576 : const struct cred *old;
577 : struct cred *new;
578 : int retval;
579 : kuid_t kruid, keuid, ksuid;
580 :
581 : kruid = make_kuid(ns, ruid);
582 : keuid = make_kuid(ns, euid);
583 : ksuid = make_kuid(ns, suid);
584 :
585 437 : if ((ruid != (uid_t) -1) && !uid_valid(kruid))
586 : return -EINVAL;
587 :
588 437 : if ((euid != (uid_t) -1) && !uid_valid(keuid))
589 : return -EINVAL;
590 :
591 437 : if ((suid != (uid_t) -1) && !uid_valid(ksuid))
592 : return -EINVAL;
593 :
594 437 : new = prepare_creds();
595 437 : if (!new)
596 : return -ENOMEM;
597 :
598 437 : old = current_cred();
599 :
600 : retval = -EPERM;
601 437 : if (!ns_capable(old->user_ns, CAP_SETUID)) {
602 87 : if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
603 0 : !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
604 : goto error;
605 87 : if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
606 20 : !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
607 : goto error;
608 68 : if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
609 0 : !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
610 : goto error;
611 : }
612 :
613 418 : if (ruid != (uid_t) -1) {
614 115 : new->uid = kruid;
615 115 : if (!uid_eq(kruid, old->uid)) {
616 83 : retval = set_user(new);
617 83 : if (retval < 0)
618 : goto error;
619 : }
620 : }
621 418 : if (euid != (uid_t) -1)
622 254 : new->euid = keuid;
623 418 : if (suid != (uid_t) -1)
624 51 : new->suid = ksuid;
625 418 : new->fsuid = new->euid;
626 :
627 : retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
628 418 : if (retval < 0)
629 : goto error;
630 :
631 418 : return commit_creds(new);
632 :
633 : error:
634 19 : abort_creds(new);
635 : return retval;
636 : }
637 :
638 136 : SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
639 : {
640 68 : const struct cred *cred = current_cred();
641 : int retval;
642 : uid_t ruid, euid, suid;
643 :
644 : ruid = from_kuid_munged(cred->user_ns, cred->uid);
645 : euid = from_kuid_munged(cred->user_ns, cred->euid);
646 : suid = from_kuid_munged(cred->user_ns, cred->suid);
647 :
648 68 : retval = put_user(ruid, ruidp);
649 68 : if (!retval) {
650 68 : retval = put_user(euid, euidp);
651 68 : if (!retval)
652 68 : return put_user(suid, suidp);
653 : }
654 : return retval;
655 : }
656 :
657 : /*
658 : * Same as above, but for rgid, egid, sgid.
659 : */
660 714 : SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
661 : {
662 : struct user_namespace *ns = current_user_ns();
663 : const struct cred *old;
664 : struct cred *new;
665 : int retval;
666 : kgid_t krgid, kegid, ksgid;
667 :
668 : krgid = make_kgid(ns, rgid);
669 : kegid = make_kgid(ns, egid);
670 : ksgid = make_kgid(ns, sgid);
671 :
672 357 : if ((rgid != (gid_t) -1) && !gid_valid(krgid))
673 : return -EINVAL;
674 357 : if ((egid != (gid_t) -1) && !gid_valid(kegid))
675 : return -EINVAL;
676 357 : if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
677 : return -EINVAL;
678 :
679 357 : new = prepare_creds();
680 357 : if (!new)
681 : return -ENOMEM;
682 357 : old = current_cred();
683 :
684 : retval = -EPERM;
685 357 : if (!ns_capable(old->user_ns, CAP_SETGID)) {
686 10 : if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
687 0 : !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
688 : goto error;
689 10 : if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
690 10 : !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
691 : goto error;
692 0 : if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
693 0 : !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
694 : goto error;
695 : }
696 :
697 347 : if (rgid != (gid_t) -1)
698 19 : new->gid = krgid;
699 347 : if (egid != (gid_t) -1)
700 276 : new->egid = kegid;
701 347 : if (sgid != (gid_t) -1)
702 19 : new->sgid = ksgid;
703 347 : new->fsgid = new->egid;
704 :
705 347 : return commit_creds(new);
706 :
707 : error:
708 10 : abort_creds(new);
709 : return retval;
710 : }
711 :
712 136 : SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
713 : {
714 68 : const struct cred *cred = current_cred();
715 : int retval;
716 : gid_t rgid, egid, sgid;
717 :
718 : rgid = from_kgid_munged(cred->user_ns, cred->gid);
719 : egid = from_kgid_munged(cred->user_ns, cred->egid);
720 : sgid = from_kgid_munged(cred->user_ns, cred->sgid);
721 :
722 68 : retval = put_user(rgid, rgidp);
723 68 : if (!retval) {
724 68 : retval = put_user(egid, egidp);
725 68 : if (!retval)
726 68 : retval = put_user(sgid, sgidp);
727 : }
728 :
729 : return retval;
730 : }
731 :
732 :
733 : /*
734 : * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
735 : * is used for "access()" and for the NFS daemon (letting nfsd stay at
736 : * whatever uid it wants to). It normally shadows "euid", except when
737 : * explicitly set by setfsuid() or for access..
738 : */
739 72 : SYSCALL_DEFINE1(setfsuid, uid_t, uid)
740 : {
741 : const struct cred *old;
742 : struct cred *new;
743 : uid_t old_fsuid;
744 : kuid_t kuid;
745 :
746 36 : old = current_cred();
747 : old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
748 :
749 : kuid = make_kuid(old->user_ns, uid);
750 36 : if (!uid_valid(kuid))
751 0 : return old_fsuid;
752 :
753 36 : new = prepare_creds();
754 36 : if (!new)
755 0 : return old_fsuid;
756 :
757 36 : if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
758 27 : uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
759 9 : ns_capable(old->user_ns, CAP_SETUID)) {
760 36 : if (!uid_eq(kuid, old->fsuid)) {
761 18 : new->fsuid = kuid;
762 18 : if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
763 : goto change_okay;
764 : }
765 : }
766 :
767 18 : abort_creds(new);
768 18 : return old_fsuid;
769 :
770 : change_okay:
771 18 : commit_creds(new);
772 18 : return old_fsuid;
773 : }
774 :
775 : /*
776 : * Samma på svenska..
777 : */
778 72 : SYSCALL_DEFINE1(setfsgid, gid_t, gid)
779 : {
780 : const struct cred *old;
781 : struct cred *new;
782 : gid_t old_fsgid;
783 : kgid_t kgid;
784 :
785 36 : old = current_cred();
786 : old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
787 :
788 : kgid = make_kgid(old->user_ns, gid);
789 36 : if (!gid_valid(kgid))
790 0 : return old_fsgid;
791 :
792 36 : new = prepare_creds();
793 36 : if (!new)
794 0 : return old_fsgid;
795 :
796 36 : if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
797 27 : gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
798 9 : ns_capable(old->user_ns, CAP_SETGID)) {
799 36 : if (!gid_eq(kgid, old->fsgid)) {
800 18 : new->fsgid = kgid;
801 : goto change_okay;
802 : }
803 : }
804 :
805 18 : abort_creds(new);
806 18 : return old_fsgid;
807 :
808 : change_okay:
809 18 : commit_creds(new);
810 18 : return old_fsgid;
811 : }
812 :
813 : /**
814 : * sys_getpid - return the thread group id of the current process
815 : *
816 : * Note, despite the name, this returns the tgid not the pid. The tgid and
817 : * the pid are identical unless CLONE_THREAD was specified on clone() in
818 : * which case the tgid is the same in all threads of the same group.
819 : *
820 : * This is SMP safe as current->tgid does not change.
821 : */
822 214 : SYSCALL_DEFINE0(getpid)
823 : {
824 428 : return task_tgid_vnr(current);
825 : }
826 :
827 : /* Thread ID - the internal kernel "pid" */
828 0 : SYSCALL_DEFINE0(gettid)
829 : {
830 0 : return task_pid_vnr(current);
831 : }
832 :
833 : /*
834 : * Accessing ->real_parent is not SMP-safe, it could
835 : * change from under us. However, we can use a stale
836 : * value of ->real_parent under rcu_read_lock(), see
837 : * release_task()->call_rcu(delayed_put_task_struct).
838 : */
839 194 : SYSCALL_DEFINE0(getppid)
840 : {
841 : int pid;
842 :
843 : rcu_read_lock();
844 194 : pid = task_tgid_vnr(rcu_dereference(current->real_parent));
845 : rcu_read_unlock();
846 :
847 194 : return pid;
848 : }
849 :
850 1574 : SYSCALL_DEFINE0(getuid)
851 : {
852 : /* Only we change this so SMP safe */
853 3148 : return from_kuid_munged(current_user_ns(), current_uid());
854 : }
855 :
856 1591 : SYSCALL_DEFINE0(geteuid)
857 : {
858 : /* Only we change this so SMP safe */
859 3182 : return from_kuid_munged(current_user_ns(), current_euid());
860 : }
861 :
862 790 : SYSCALL_DEFINE0(getgid)
863 : {
864 : /* Only we change this so SMP safe */
865 1580 : return from_kgid_munged(current_user_ns(), current_gid());
866 : }
867 :
868 908 : SYSCALL_DEFINE0(getegid)
869 : {
870 : /* Only we change this so SMP safe */
871 1816 : return from_kgid_munged(current_user_ns(), current_egid());
872 : }
873 :
874 10 : void do_sys_times(struct tms *tms)
875 : {
876 : cputime_t tgutime, tgstime, cutime, cstime;
877 :
878 10 : thread_group_cputime_adjusted(current, &tgutime, &tgstime);
879 10 : cutime = current->signal->cutime;
880 10 : cstime = current->signal->cstime;
881 10 : tms->tms_utime = cputime_to_clock_t(tgutime);
882 10 : tms->tms_stime = cputime_to_clock_t(tgstime);
883 10 : tms->tms_cutime = cputime_to_clock_t(cutime);
884 10 : tms->tms_cstime = cputime_to_clock_t(cstime);
885 10 : }
886 :
887 20 : SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
888 : {
889 10 : if (tbuf) {
890 : struct tms tmp;
891 :
892 10 : do_sys_times(&tmp);
893 10 : if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
894 0 : return -EFAULT;
895 : }
896 : force_successful_syscall_return();
897 10 : return (long) jiffies_64_to_clock_t(get_jiffies_64());
898 : }
899 :
900 : /*
901 : * This needs some heavy checking ...
902 : * I just haven't the stomach for it. I also don't fully
903 : * understand sessions/pgrp etc. Let somebody who does explain it.
904 : *
905 : * OK, I think I have the protection semantics right.... this is really
906 : * only important on a multi-user system anyway, to make sure one user
907 : * can't send a signal to a process owned by another. -TYT, 12/12/91
908 : *
909 : * !PF_FORKNOEXEC check to conform completely to POSIX.
910 : */
911 1302 : SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
912 : {
913 : struct task_struct *p;
914 651 : struct task_struct *group_leader = current->group_leader;
915 : struct pid *pgrp;
916 : int err;
917 :
918 651 : if (!pid)
919 : pid = task_pid_vnr(group_leader);
920 651 : if (!pgid)
921 : pgid = pid;
922 651 : if (pgid < 0)
923 : return -EINVAL;
924 : rcu_read_lock();
925 :
926 : /* From this point forward we keep holding onto the tasklist lock
927 : * so that our parent does not change from under us. -DaveM
928 : */
929 651 : write_lock_irq(&tasklist_lock);
930 :
931 : err = -ESRCH;
932 651 : p = find_task_by_vpid(pid);
933 651 : if (!p)
934 : goto out;
935 :
936 : err = -EINVAL;
937 651 : if (!thread_group_leader(p))
938 : goto out;
939 :
940 1302 : if (same_thread_group(p->real_parent, group_leader)) {
941 : err = -EPERM;
942 302 : if (task_session(p) != task_session(group_leader))
943 : goto out;
944 : err = -EACCES;
945 302 : if (!(p->flags & PF_FORKNOEXEC))
946 : goto out;
947 : } else {
948 : err = -ESRCH;
949 349 : if (p != group_leader)
950 : goto out;
951 : }
952 :
953 : err = -EPERM;
954 651 : if (p->signal->leader)
955 : goto out;
956 :
957 : pgrp = task_pid(p);
958 651 : if (pgid != pid) {
959 : struct task_struct *g;
960 :
961 399 : pgrp = find_vpid(pgid);
962 399 : g = pid_task(pgrp, PIDTYPE_PGID);
963 798 : if (!g || task_session(g) != task_session(group_leader))
964 : goto out;
965 : }
966 :
967 : err = security_task_setpgid(p, pgid);
968 : if (err)
969 : goto out;
970 :
971 651 : if (task_pgrp(p) != pgrp)
972 145 : change_pid(p, PIDTYPE_PGID, pgrp);
973 :
974 : err = 0;
975 : out:
976 : /* All paths lead to here, thus we are safe. -DaveM */
977 1302 : write_unlock_irq(&tasklist_lock);
978 : rcu_read_unlock();
979 : return err;
980 : }
981 :
982 120 : SYSCALL_DEFINE1(getpgid, pid_t, pid)
983 : {
984 : struct task_struct *p;
985 : struct pid *grp;
986 : int retval;
987 :
988 : rcu_read_lock();
989 60 : if (!pid)
990 60 : grp = task_pgrp(current);
991 : else {
992 : retval = -ESRCH;
993 0 : p = find_task_by_vpid(pid);
994 0 : if (!p)
995 : goto out;
996 : grp = task_pgrp(p);
997 0 : if (!grp)
998 : goto out;
999 :
1000 : retval = security_task_getpgid(p);
1001 : if (retval)
1002 : goto out;
1003 : }
1004 60 : retval = pid_vnr(grp);
1005 : out:
1006 : rcu_read_unlock();
1007 : return retval;
1008 : }
1009 :
1010 : #ifdef __ARCH_WANT_SYS_GETPGRP
1011 :
1012 27 : SYSCALL_DEFINE0(getpgrp)
1013 : {
1014 27 : return sys_getpgid(0);
1015 : }
1016 :
1017 : #endif
1018 :
1019 80 : SYSCALL_DEFINE1(getsid, pid_t, pid)
1020 : {
1021 : struct task_struct *p;
1022 : struct pid *sid;
1023 : int retval;
1024 :
1025 : rcu_read_lock();
1026 40 : if (!pid)
1027 40 : sid = task_session(current);
1028 : else {
1029 : retval = -ESRCH;
1030 0 : p = find_task_by_vpid(pid);
1031 0 : if (!p)
1032 : goto out;
1033 : sid = task_session(p);
1034 0 : if (!sid)
1035 : goto out;
1036 :
1037 : retval = security_task_getsid(p);
1038 : if (retval)
1039 : goto out;
1040 : }
1041 40 : retval = pid_vnr(sid);
1042 : out:
1043 : rcu_read_unlock();
1044 : return retval;
1045 : }
1046 :
1047 44 : static void set_special_pids(struct pid *pid)
1048 : {
1049 44 : struct task_struct *curr = current->group_leader;
1050 :
1051 44 : if (task_session(curr) != pid)
1052 44 : change_pid(curr, PIDTYPE_SID, pid);
1053 :
1054 44 : if (task_pgrp(curr) != pid)
1055 44 : change_pid(curr, PIDTYPE_PGID, pid);
1056 44 : }
1057 :
1058 44 : SYSCALL_DEFINE0(setsid)
1059 : {
1060 44 : struct task_struct *group_leader = current->group_leader;
1061 : struct pid *sid = task_pid(group_leader);
1062 44 : pid_t session = pid_vnr(sid);
1063 : int err = -EPERM;
1064 :
1065 44 : write_lock_irq(&tasklist_lock);
1066 : /* Fail if I am already a session leader */
1067 44 : if (group_leader->signal->leader)
1068 : goto out;
1069 :
1070 : /* Fail if a process group id already exists that equals the
1071 : * proposed session id.
1072 : */
1073 44 : if (pid_task(sid, PIDTYPE_PGID))
1074 : goto out;
1075 :
1076 44 : group_leader->signal->leader = 1;
1077 44 : set_special_pids(sid);
1078 :
1079 44 : proc_clear_tty(group_leader);
1080 :
1081 : err = session;
1082 : out:
1083 88 : write_unlock_irq(&tasklist_lock);
1084 44 : if (err > 0) {
1085 : proc_sid_connector(group_leader);
1086 44 : sched_autogroup_create_attach(group_leader);
1087 : }
1088 44 : return err;
1089 : }
1090 :
1091 : DECLARE_RWSEM(uts_sem);
1092 :
1093 : #ifdef COMPAT_UTS_MACHINE
1094 : #define override_architecture(name) \
1095 : (personality(current->personality) == PER_LINUX32 && \
1096 : copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1097 : sizeof(COMPAT_UTS_MACHINE)))
1098 : #else
1099 : #define override_architecture(name) 0
1100 : #endif
1101 :
1102 : /*
1103 : * Work around broken programs that cannot handle "Linux 3.0".
1104 : * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1105 : */
1106 2470 : static int override_release(char __user *release, size_t len)
1107 : {
1108 : int ret = 0;
1109 :
1110 2470 : if (current->personality & UNAME26) {
1111 : const char *rest = UTS_RELEASE;
1112 0 : char buf[65] = { 0 };
1113 : int ndots = 0;
1114 : unsigned v;
1115 : size_t copy;
1116 :
1117 0 : while (*rest) {
1118 0 : if (*rest == '.' && ++ndots >= 3)
1119 : break;
1120 0 : if (!isdigit(*rest) && *rest != '.')
1121 : break;
1122 0 : rest++;
1123 : }
1124 : v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1125 0 : copy = clamp_t(size_t, len, 1, sizeof(buf));
1126 0 : copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1127 0 : ret = copy_to_user(release, buf, copy + 1);
1128 : }
1129 2470 : return ret;
1130 : }
1131 :
1132 4940 : SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1133 : {
1134 : int errno = 0;
1135 :
1136 2470 : down_read(&uts_sem);
1137 4940 : if (copy_to_user(name, utsname(), sizeof *name))
1138 : errno = -EFAULT;
1139 2470 : up_read(&uts_sem);
1140 :
1141 2470 : if (!errno && override_release(name->release, sizeof(name->release)))
1142 : errno = -EFAULT;
1143 : if (!errno && override_architecture(name))
1144 : errno = -EFAULT;
1145 : return errno;
1146 : }
1147 :
1148 : #ifdef __ARCH_WANT_SYS_OLD_UNAME
1149 : /*
1150 : * Old cruft
1151 : */
1152 : SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1153 : {
1154 : int error = 0;
1155 :
1156 : if (!name)
1157 : return -EFAULT;
1158 :
1159 : down_read(&uts_sem);
1160 : if (copy_to_user(name, utsname(), sizeof(*name)))
1161 : error = -EFAULT;
1162 : up_read(&uts_sem);
1163 :
1164 : if (!error && override_release(name->release, sizeof(name->release)))
1165 : error = -EFAULT;
1166 : if (!error && override_architecture(name))
1167 : error = -EFAULT;
1168 : return error;
1169 : }
1170 :
1171 : SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1172 : {
1173 : int error;
1174 :
1175 : if (!name)
1176 : return -EFAULT;
1177 : if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1178 : return -EFAULT;
1179 :
1180 : down_read(&uts_sem);
1181 : error = __copy_to_user(&name->sysname, &utsname()->sysname,
1182 : __OLD_UTS_LEN);
1183 : error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1184 : error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1185 : __OLD_UTS_LEN);
1186 : error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1187 : error |= __copy_to_user(&name->release, &utsname()->release,
1188 : __OLD_UTS_LEN);
1189 : error |= __put_user(0, name->release + __OLD_UTS_LEN);
1190 : error |= __copy_to_user(&name->version, &utsname()->version,
1191 : __OLD_UTS_LEN);
1192 : error |= __put_user(0, name->version + __OLD_UTS_LEN);
1193 : error |= __copy_to_user(&name->machine, &utsname()->machine,
1194 : __OLD_UTS_LEN);
1195 : error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1196 : up_read(&uts_sem);
1197 :
1198 : if (!error && override_architecture(name))
1199 : error = -EFAULT;
1200 : if (!error && override_release(name->release, sizeof(name->release)))
1201 : error = -EFAULT;
1202 : return error ? -EFAULT : 0;
1203 : }
1204 : #endif
1205 :
1206 2 : SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1207 : {
1208 : int errno;
1209 : char tmp[__NEW_UTS_LEN];
1210 :
1211 1 : if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1212 : return -EPERM;
1213 :
1214 1 : if (len < 0 || len > __NEW_UTS_LEN)
1215 : return -EINVAL;
1216 1 : down_write(&uts_sem);
1217 : errno = -EFAULT;
1218 1 : if (!copy_from_user(tmp, name, len)) {
1219 : struct new_utsname *u = utsname();
1220 :
1221 1 : memcpy(u->nodename, tmp, len);
1222 1 : memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1223 : errno = 0;
1224 1 : uts_proc_notify(UTS_PROC_HOSTNAME);
1225 : }
1226 1 : up_write(&uts_sem);
1227 : return errno;
1228 : }
1229 :
1230 : #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1231 :
1232 0 : SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1233 : {
1234 : int i, errno;
1235 : struct new_utsname *u;
1236 :
1237 0 : if (len < 0)
1238 : return -EINVAL;
1239 0 : down_read(&uts_sem);
1240 : u = utsname();
1241 0 : i = 1 + strlen(u->nodename);
1242 0 : if (i > len)
1243 : i = len;
1244 : errno = 0;
1245 0 : if (copy_to_user(name, u->nodename, i))
1246 : errno = -EFAULT;
1247 0 : up_read(&uts_sem);
1248 : return errno;
1249 : }
1250 :
1251 : #endif
1252 :
1253 : /*
1254 : * Only setdomainname; getdomainname can be implemented by calling
1255 : * uname()
1256 : */
1257 0 : SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1258 : {
1259 : int errno;
1260 : char tmp[__NEW_UTS_LEN];
1261 :
1262 0 : if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1263 : return -EPERM;
1264 0 : if (len < 0 || len > __NEW_UTS_LEN)
1265 : return -EINVAL;
1266 :
1267 0 : down_write(&uts_sem);
1268 : errno = -EFAULT;
1269 0 : if (!copy_from_user(tmp, name, len)) {
1270 : struct new_utsname *u = utsname();
1271 :
1272 0 : memcpy(u->domainname, tmp, len);
1273 0 : memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1274 : errno = 0;
1275 0 : uts_proc_notify(UTS_PROC_DOMAINNAME);
1276 : }
1277 0 : up_write(&uts_sem);
1278 : return errno;
1279 : }
1280 :
1281 596 : SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1282 : {
1283 : struct rlimit value;
1284 : int ret;
1285 :
1286 298 : ret = do_prlimit(current, resource, NULL, &value);
1287 298 : if (!ret)
1288 298 : ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1289 :
1290 : return ret;
1291 : }
1292 :
1293 : #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1294 :
1295 : /*
1296 : * Back compatibility for getrlimit. Needed for some apps.
1297 : */
1298 : SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1299 : struct rlimit __user *, rlim)
1300 : {
1301 : struct rlimit x;
1302 : if (resource >= RLIM_NLIMITS)
1303 : return -EINVAL;
1304 :
1305 : task_lock(current->group_leader);
1306 : x = current->signal->rlim[resource];
1307 : task_unlock(current->group_leader);
1308 : if (x.rlim_cur > 0x7FFFFFFF)
1309 : x.rlim_cur = 0x7FFFFFFF;
1310 : if (x.rlim_max > 0x7FFFFFFF)
1311 : x.rlim_max = 0x7FFFFFFF;
1312 : return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1313 : }
1314 :
1315 : #endif
1316 :
1317 : static inline bool rlim64_is_infinity(__u64 rlim64)
1318 : {
1319 : #if BITS_PER_LONG < 64
1320 : return rlim64 >= ULONG_MAX;
1321 : #else
1322 : return rlim64 == RLIM64_INFINITY;
1323 : #endif
1324 : }
1325 :
1326 268 : static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1327 : {
1328 268 : if (rlim->rlim_cur == RLIM_INFINITY)
1329 102 : rlim64->rlim_cur = RLIM64_INFINITY;
1330 : else
1331 166 : rlim64->rlim_cur = rlim->rlim_cur;
1332 268 : if (rlim->rlim_max == RLIM_INFINITY)
1333 159 : rlim64->rlim_max = RLIM64_INFINITY;
1334 : else
1335 109 : rlim64->rlim_max = rlim->rlim_max;
1336 268 : }
1337 :
1338 294 : static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1339 : {
1340 294 : if (rlim64_is_infinity(rlim64->rlim_cur))
1341 112 : rlim->rlim_cur = RLIM_INFINITY;
1342 : else
1343 182 : rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1344 294 : if (rlim64_is_infinity(rlim64->rlim_max))
1345 199 : rlim->rlim_max = RLIM_INFINITY;
1346 : else
1347 95 : rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1348 294 : }
1349 :
1350 : /* make sure you are allowed to change @tsk limits before calling this */
1351 861 : int do_prlimit(struct task_struct *tsk, unsigned int resource,
1352 : struct rlimit *new_rlim, struct rlimit *old_rlim)
1353 : {
1354 : struct rlimit *rlim;
1355 : int retval = 0;
1356 :
1357 861 : if (resource >= RLIM_NLIMITS)
1358 : return -EINVAL;
1359 861 : if (new_rlim) {
1360 295 : if (new_rlim->rlim_cur > new_rlim->rlim_max)
1361 : return -EINVAL;
1362 308 : if (resource == RLIMIT_NOFILE &&
1363 13 : new_rlim->rlim_max > sysctl_nr_open)
1364 : return -EPERM;
1365 : }
1366 :
1367 : /* protect tsk->signal and tsk->sighand from disappearing */
1368 861 : read_lock(&tasklist_lock);
1369 861 : if (!tsk->sighand) {
1370 : retval = -ESRCH;
1371 : goto out;
1372 : }
1373 :
1374 861 : rlim = tsk->signal->rlim + resource;
1375 : task_lock(tsk->group_leader);
1376 861 : if (new_rlim) {
1377 : /* Keep the capable check against init_user_ns until
1378 : cgroups can contain all limits */
1379 348 : if (new_rlim->rlim_max > rlim->rlim_max &&
1380 53 : !capable(CAP_SYS_RESOURCE))
1381 : retval = -EPERM;
1382 295 : if (!retval)
1383 : retval = security_task_setrlimit(tsk->group_leader,
1384 : resource, new_rlim);
1385 295 : if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1386 : /*
1387 : * The caller is asking for an immediate RLIMIT_CPU
1388 : * expiry. But we use the zero value to mean "it was
1389 : * never set". So let's cheat and make it one second
1390 : * instead
1391 : */
1392 0 : new_rlim->rlim_cur = 1;
1393 : }
1394 : }
1395 861 : if (!retval) {
1396 861 : if (old_rlim)
1397 566 : *old_rlim = *rlim;
1398 861 : if (new_rlim)
1399 295 : *rlim = *new_rlim;
1400 : }
1401 : task_unlock(tsk->group_leader);
1402 :
1403 : /*
1404 : * RLIMIT_CPU handling. Note that the kernel fails to return an error
1405 : * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1406 : * very long-standing error, and fixing it now risks breakage of
1407 : * applications, so we live with it
1408 : */
1409 871 : if (!retval && new_rlim && resource == RLIMIT_CPU &&
1410 10 : new_rlim->rlim_cur != RLIM_INFINITY)
1411 0 : update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1412 : out:
1413 1722 : read_unlock(&tasklist_lock);
1414 861 : return retval;
1415 : }
1416 :
1417 : /* rcu lock must be held */
1418 562 : static int check_prlimit_permission(struct task_struct *task)
1419 : {
1420 562 : const struct cred *cred = current_cred(), *tcred;
1421 :
1422 562 : if (current == task)
1423 : return 0;
1424 :
1425 0 : tcred = __task_cred(task);
1426 0 : if (uid_eq(cred->uid, tcred->euid) &&
1427 0 : uid_eq(cred->uid, tcred->suid) &&
1428 0 : uid_eq(cred->uid, tcred->uid) &&
1429 0 : gid_eq(cred->gid, tcred->egid) &&
1430 0 : gid_eq(cred->gid, tcred->sgid) &&
1431 : gid_eq(cred->gid, tcred->gid))
1432 : return 0;
1433 0 : if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1434 : return 0;
1435 :
1436 0 : return -EPERM;
1437 : }
1438 :
1439 1124 : SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1440 : const struct rlimit64 __user *, new_rlim,
1441 : struct rlimit64 __user *, old_rlim)
1442 : {
1443 : struct rlimit64 old64, new64;
1444 : struct rlimit old, new;
1445 : struct task_struct *tsk;
1446 : int ret;
1447 :
1448 562 : if (new_rlim) {
1449 294 : if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1450 : return -EFAULT;
1451 294 : rlim64_to_rlim(&new64, &new);
1452 : }
1453 :
1454 : rcu_read_lock();
1455 1124 : tsk = pid ? find_task_by_vpid(pid) : current;
1456 562 : if (!tsk) {
1457 : rcu_read_unlock();
1458 : return -ESRCH;
1459 : }
1460 562 : ret = check_prlimit_permission(tsk);
1461 562 : if (ret) {
1462 : rcu_read_unlock();
1463 : return ret;
1464 : }
1465 562 : get_task_struct(tsk);
1466 : rcu_read_unlock();
1467 :
1468 562 : ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1469 : old_rlim ? &old : NULL);
1470 :
1471 562 : if (!ret && old_rlim) {
1472 268 : rlim_to_rlim64(&old, &old64);
1473 268 : if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1474 : ret = -EFAULT;
1475 : }
1476 :
1477 : put_task_struct(tsk);
1478 : return ret;
1479 : }
1480 :
1481 2 : SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1482 : {
1483 : struct rlimit new_rlim;
1484 :
1485 1 : if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1486 : return -EFAULT;
1487 1 : return do_prlimit(current, resource, &new_rlim, NULL);
1488 : }
1489 :
1490 : /*
1491 : * It would make sense to put struct rusage in the task_struct,
1492 : * except that would make the task_struct be *really big*. After
1493 : * task_struct gets moved into malloc'ed memory, it would
1494 : * make sense to do this. It will make moving the rest of the information
1495 : * a lot simpler! (Which we're not doing right now because we're not
1496 : * measuring them yet).
1497 : *
1498 : * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1499 : * races with threads incrementing their own counters. But since word
1500 : * reads are atomic, we either get new values or old values and we don't
1501 : * care which for the sums. We always take the siglock to protect reading
1502 : * the c* fields from p->signal from races with exit.c updating those
1503 : * fields when reaping, so a sample either gets all the additions of a
1504 : * given child after it's reaped, or none so this sample is before reaping.
1505 : *
1506 : * Locking:
1507 : * We need to take the siglock for CHILDEREN, SELF and BOTH
1508 : * for the cases current multithreaded, non-current single threaded
1509 : * non-current multithreaded. Thread traversal is now safe with
1510 : * the siglock held.
1511 : * Strictly speaking, we donot need to take the siglock if we are current and
1512 : * single threaded, as no one else can take our signal_struct away, no one
1513 : * else can reap the children to update signal->c* counters, and no one else
1514 : * can race with the signal-> fields. If we do not take any lock, the
1515 : * signal-> fields could be read out of order while another thread was just
1516 : * exiting. So we should place a read memory barrier when we avoid the lock.
1517 : * On the writer side, write memory barrier is implied in __exit_signal
1518 : * as __exit_signal releases the siglock spinlock after updating the signal->
1519 : * fields. But we don't do this yet to keep things simple.
1520 : *
1521 : */
1522 :
1523 11 : static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1524 : {
1525 11 : r->ru_nvcsw += t->nvcsw;
1526 11 : r->ru_nivcsw += t->nivcsw;
1527 11 : r->ru_minflt += t->min_flt;
1528 11 : r->ru_majflt += t->maj_flt;
1529 22 : r->ru_inblock += task_io_get_inblock(t);
1530 22 : r->ru_oublock += task_io_get_oublock(t);
1531 11 : }
1532 :
1533 11 : static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1534 : {
1535 : struct task_struct *t;
1536 : unsigned long flags;
1537 : cputime_t tgutime, tgstime, utime, stime;
1538 : unsigned long maxrss = 0;
1539 :
1540 11 : memset((char *)r, 0, sizeof (*r));
1541 11 : utime = stime = 0;
1542 :
1543 11 : if (who == RUSAGE_THREAD) {
1544 0 : task_cputime_adjusted(current, &utime, &stime);
1545 0 : accumulate_thread_rusage(p, r);
1546 0 : maxrss = p->signal->maxrss;
1547 0 : goto out;
1548 : }
1549 :
1550 11 : if (!lock_task_sighand(p, &flags))
1551 0 : return;
1552 :
1553 11 : switch (who) {
1554 : case RUSAGE_BOTH:
1555 : case RUSAGE_CHILDREN:
1556 0 : utime = p->signal->cutime;
1557 0 : stime = p->signal->cstime;
1558 0 : r->ru_nvcsw = p->signal->cnvcsw;
1559 0 : r->ru_nivcsw = p->signal->cnivcsw;
1560 0 : r->ru_minflt = p->signal->cmin_flt;
1561 0 : r->ru_majflt = p->signal->cmaj_flt;
1562 0 : r->ru_inblock = p->signal->cinblock;
1563 0 : r->ru_oublock = p->signal->coublock;
1564 0 : maxrss = p->signal->cmaxrss;
1565 :
1566 0 : if (who == RUSAGE_CHILDREN)
1567 : break;
1568 :
1569 : case RUSAGE_SELF:
1570 11 : thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1571 11 : utime += tgutime;
1572 11 : stime += tgstime;
1573 11 : r->ru_nvcsw += p->signal->nvcsw;
1574 11 : r->ru_nivcsw += p->signal->nivcsw;
1575 11 : r->ru_minflt += p->signal->min_flt;
1576 11 : r->ru_majflt += p->signal->maj_flt;
1577 11 : r->ru_inblock += p->signal->inblock;
1578 11 : r->ru_oublock += p->signal->oublock;
1579 11 : if (maxrss < p->signal->maxrss)
1580 : maxrss = p->signal->maxrss;
1581 : t = p;
1582 : do {
1583 11 : accumulate_thread_rusage(t, r);
1584 11 : } while_each_thread(p, t);
1585 : break;
1586 :
1587 : default:
1588 : BUG();
1589 : }
1590 11 : unlock_task_sighand(p, &flags);
1591 :
1592 : out:
1593 11 : cputime_to_timeval(utime, &r->ru_utime);
1594 11 : cputime_to_timeval(stime, &r->ru_stime);
1595 :
1596 11 : if (who != RUSAGE_CHILDREN) {
1597 11 : struct mm_struct *mm = get_task_mm(p);
1598 :
1599 11 : if (mm) {
1600 : setmax_mm_hiwater_rss(&maxrss, mm);
1601 11 : mmput(mm);
1602 : }
1603 : }
1604 11 : r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1605 : }
1606 :
1607 11 : int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1608 : {
1609 : struct rusage r;
1610 :
1611 11 : k_getrusage(p, who, &r);
1612 11 : return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1613 : }
1614 :
1615 22 : SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1616 : {
1617 11 : if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1618 : who != RUSAGE_THREAD)
1619 : return -EINVAL;
1620 11 : return getrusage(current, who, ru);
1621 : }
1622 :
1623 : #ifdef CONFIG_COMPAT
1624 : COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1625 : {
1626 : struct rusage r;
1627 :
1628 : if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1629 : who != RUSAGE_THREAD)
1630 : return -EINVAL;
1631 :
1632 : k_getrusage(current, who, &r);
1633 : return put_compat_rusage(&r, ru);
1634 : }
1635 : #endif
1636 :
1637 588 : SYSCALL_DEFINE1(umask, int, mask)
1638 : {
1639 882 : mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1640 : return mask;
1641 : }
1642 :
1643 0 : static int prctl_set_mm_exe_file_locked(struct mm_struct *mm, unsigned int fd)
1644 : {
1645 : struct fd exe;
1646 : struct inode *inode;
1647 : int err;
1648 :
1649 : VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1650 :
1651 : exe = fdget(fd);
1652 0 : if (!exe.file)
1653 : return -EBADF;
1654 :
1655 : inode = file_inode(exe.file);
1656 :
1657 : /*
1658 : * Because the original mm->exe_file points to executable file, make
1659 : * sure that this one is executable as well, to avoid breaking an
1660 : * overall picture.
1661 : */
1662 : err = -EACCES;
1663 0 : if (!S_ISREG(inode->i_mode) ||
1664 0 : exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1665 : goto exit;
1666 :
1667 0 : err = inode_permission(inode, MAY_EXEC);
1668 0 : if (err)
1669 : goto exit;
1670 :
1671 : /*
1672 : * Forbid mm->exe_file change if old file still mapped.
1673 : */
1674 : err = -EBUSY;
1675 0 : if (mm->exe_file) {
1676 : struct vm_area_struct *vma;
1677 :
1678 0 : for (vma = mm->mmap; vma; vma = vma->vm_next)
1679 0 : if (vma->vm_file &&
1680 : path_equal(&vma->vm_file->f_path,
1681 : &mm->exe_file->f_path))
1682 : goto exit;
1683 : }
1684 :
1685 : /*
1686 : * The symlink can be changed only once, just to disallow arbitrary
1687 : * transitions malicious software might bring in. This means one
1688 : * could make a snapshot over all processes running and monitor
1689 : * /proc/pid/exe changes to notice unusual activity if needed.
1690 : */
1691 : err = -EPERM;
1692 0 : if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1693 : goto exit;
1694 :
1695 : err = 0;
1696 0 : set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1697 : exit:
1698 : fdput(exe);
1699 0 : return err;
1700 : }
1701 :
1702 : #ifdef CONFIG_CHECKPOINT_RESTORE
1703 : /*
1704 : * WARNING: we don't require any capability here so be very careful
1705 : * in what is allowed for modification from userspace.
1706 : */
1707 : static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1708 : {
1709 : unsigned long mmap_max_addr = TASK_SIZE;
1710 : struct mm_struct *mm = current->mm;
1711 : int error = -EINVAL, i;
1712 :
1713 : static const unsigned char offsets[] = {
1714 : offsetof(struct prctl_mm_map, start_code),
1715 : offsetof(struct prctl_mm_map, end_code),
1716 : offsetof(struct prctl_mm_map, start_data),
1717 : offsetof(struct prctl_mm_map, end_data),
1718 : offsetof(struct prctl_mm_map, start_brk),
1719 : offsetof(struct prctl_mm_map, brk),
1720 : offsetof(struct prctl_mm_map, start_stack),
1721 : offsetof(struct prctl_mm_map, arg_start),
1722 : offsetof(struct prctl_mm_map, arg_end),
1723 : offsetof(struct prctl_mm_map, env_start),
1724 : offsetof(struct prctl_mm_map, env_end),
1725 : };
1726 :
1727 : /*
1728 : * Make sure the members are not somewhere outside
1729 : * of allowed address space.
1730 : */
1731 : for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1732 : u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1733 :
1734 : if ((unsigned long)val >= mmap_max_addr ||
1735 : (unsigned long)val < mmap_min_addr)
1736 : goto out;
1737 : }
1738 :
1739 : /*
1740 : * Make sure the pairs are ordered.
1741 : */
1742 : #define __prctl_check_order(__m1, __op, __m2) \
1743 : ((unsigned long)prctl_map->__m1 __op \
1744 : (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1745 : error = __prctl_check_order(start_code, <, end_code);
1746 : error |= __prctl_check_order(start_data, <, end_data);
1747 : error |= __prctl_check_order(start_brk, <=, brk);
1748 : error |= __prctl_check_order(arg_start, <=, arg_end);
1749 : error |= __prctl_check_order(env_start, <=, env_end);
1750 : if (error)
1751 : goto out;
1752 : #undef __prctl_check_order
1753 :
1754 : error = -EINVAL;
1755 :
1756 : /*
1757 : * @brk should be after @end_data in traditional maps.
1758 : */
1759 : if (prctl_map->start_brk <= prctl_map->end_data ||
1760 : prctl_map->brk <= prctl_map->end_data)
1761 : goto out;
1762 :
1763 : /*
1764 : * Neither we should allow to override limits if they set.
1765 : */
1766 : if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1767 : prctl_map->start_brk, prctl_map->end_data,
1768 : prctl_map->start_data))
1769 : goto out;
1770 :
1771 : /*
1772 : * Someone is trying to cheat the auxv vector.
1773 : */
1774 : if (prctl_map->auxv_size) {
1775 : if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1776 : goto out;
1777 : }
1778 :
1779 : /*
1780 : * Finally, make sure the caller has the rights to
1781 : * change /proc/pid/exe link: only local root should
1782 : * be allowed to.
1783 : */
1784 : if (prctl_map->exe_fd != (u32)-1) {
1785 : struct user_namespace *ns = current_user_ns();
1786 : const struct cred *cred = current_cred();
1787 :
1788 : if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1789 : !gid_eq(cred->gid, make_kgid(ns, 0)))
1790 : goto out;
1791 : }
1792 :
1793 : error = 0;
1794 : out:
1795 : return error;
1796 : }
1797 :
1798 : static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1799 : {
1800 : struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1801 : unsigned long user_auxv[AT_VECTOR_SIZE];
1802 : struct mm_struct *mm = current->mm;
1803 : int error;
1804 :
1805 : BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1806 : BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1807 :
1808 : if (opt == PR_SET_MM_MAP_SIZE)
1809 : return put_user((unsigned int)sizeof(prctl_map),
1810 : (unsigned int __user *)addr);
1811 :
1812 : if (data_size != sizeof(prctl_map))
1813 : return -EINVAL;
1814 :
1815 : if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1816 : return -EFAULT;
1817 :
1818 : error = validate_prctl_map(&prctl_map);
1819 : if (error)
1820 : return error;
1821 :
1822 : if (prctl_map.auxv_size) {
1823 : memset(user_auxv, 0, sizeof(user_auxv));
1824 : if (copy_from_user(user_auxv,
1825 : (const void __user *)prctl_map.auxv,
1826 : prctl_map.auxv_size))
1827 : return -EFAULT;
1828 :
1829 : /* Last entry must be AT_NULL as specification requires */
1830 : user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1831 : user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1832 : }
1833 :
1834 : down_write(&mm->mmap_sem);
1835 : if (prctl_map.exe_fd != (u32)-1)
1836 : error = prctl_set_mm_exe_file_locked(mm, prctl_map.exe_fd);
1837 : downgrade_write(&mm->mmap_sem);
1838 : if (error)
1839 : goto out;
1840 :
1841 : /*
1842 : * We don't validate if these members are pointing to
1843 : * real present VMAs because application may have correspond
1844 : * VMAs already unmapped and kernel uses these members for statistics
1845 : * output in procfs mostly, except
1846 : *
1847 : * - @start_brk/@brk which are used in do_brk but kernel lookups
1848 : * for VMAs when updating these memvers so anything wrong written
1849 : * here cause kernel to swear at userspace program but won't lead
1850 : * to any problem in kernel itself
1851 : */
1852 :
1853 : mm->start_code = prctl_map.start_code;
1854 : mm->end_code = prctl_map.end_code;
1855 : mm->start_data = prctl_map.start_data;
1856 : mm->end_data = prctl_map.end_data;
1857 : mm->start_brk = prctl_map.start_brk;
1858 : mm->brk = prctl_map.brk;
1859 : mm->start_stack = prctl_map.start_stack;
1860 : mm->arg_start = prctl_map.arg_start;
1861 : mm->arg_end = prctl_map.arg_end;
1862 : mm->env_start = prctl_map.env_start;
1863 : mm->env_end = prctl_map.env_end;
1864 :
1865 : /*
1866 : * Note this update of @saved_auxv is lockless thus
1867 : * if someone reads this member in procfs while we're
1868 : * updating -- it may get partly updated results. It's
1869 : * known and acceptable trade off: we leave it as is to
1870 : * not introduce additional locks here making the kernel
1871 : * more complex.
1872 : */
1873 : if (prctl_map.auxv_size)
1874 : memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1875 :
1876 : error = 0;
1877 : out:
1878 : up_read(&mm->mmap_sem);
1879 : return error;
1880 : }
1881 : #endif /* CONFIG_CHECKPOINT_RESTORE */
1882 :
1883 0 : static int prctl_set_mm(int opt, unsigned long addr,
1884 : unsigned long arg4, unsigned long arg5)
1885 : {
1886 0 : struct mm_struct *mm = current->mm;
1887 : struct vm_area_struct *vma;
1888 : int error;
1889 :
1890 0 : if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1891 0 : opt != PR_SET_MM_MAP &&
1892 : opt != PR_SET_MM_MAP_SIZE)))
1893 : return -EINVAL;
1894 :
1895 : #ifdef CONFIG_CHECKPOINT_RESTORE
1896 : if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1897 : return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1898 : #endif
1899 :
1900 0 : if (!capable(CAP_SYS_RESOURCE))
1901 : return -EPERM;
1902 :
1903 0 : if (opt == PR_SET_MM_EXE_FILE) {
1904 0 : down_write(&mm->mmap_sem);
1905 0 : error = prctl_set_mm_exe_file_locked(mm, (unsigned int)addr);
1906 0 : up_write(&mm->mmap_sem);
1907 0 : return error;
1908 : }
1909 :
1910 0 : if (addr >= TASK_SIZE || addr < mmap_min_addr)
1911 : return -EINVAL;
1912 :
1913 : error = -EINVAL;
1914 :
1915 0 : down_read(&mm->mmap_sem);
1916 0 : vma = find_vma(mm, addr);
1917 :
1918 0 : switch (opt) {
1919 : case PR_SET_MM_START_CODE:
1920 0 : mm->start_code = addr;
1921 0 : break;
1922 : case PR_SET_MM_END_CODE:
1923 0 : mm->end_code = addr;
1924 0 : break;
1925 : case PR_SET_MM_START_DATA:
1926 0 : mm->start_data = addr;
1927 0 : break;
1928 : case PR_SET_MM_END_DATA:
1929 0 : mm->end_data = addr;
1930 0 : break;
1931 :
1932 : case PR_SET_MM_START_BRK:
1933 0 : if (addr <= mm->end_data)
1934 : goto out;
1935 :
1936 0 : if (check_data_rlimit(rlimit(RLIMIT_DATA), mm->brk, addr,
1937 : mm->end_data, mm->start_data))
1938 : goto out;
1939 :
1940 0 : mm->start_brk = addr;
1941 0 : break;
1942 :
1943 : case PR_SET_MM_BRK:
1944 0 : if (addr <= mm->end_data)
1945 : goto out;
1946 :
1947 0 : if (check_data_rlimit(rlimit(RLIMIT_DATA), addr, mm->start_brk,
1948 : mm->end_data, mm->start_data))
1949 : goto out;
1950 :
1951 0 : mm->brk = addr;
1952 0 : break;
1953 :
1954 : /*
1955 : * If command line arguments and environment
1956 : * are placed somewhere else on stack, we can
1957 : * set them up here, ARG_START/END to setup
1958 : * command line argumets and ENV_START/END
1959 : * for environment.
1960 : */
1961 : case PR_SET_MM_START_STACK:
1962 : case PR_SET_MM_ARG_START:
1963 : case PR_SET_MM_ARG_END:
1964 : case PR_SET_MM_ENV_START:
1965 : case PR_SET_MM_ENV_END:
1966 0 : if (!vma) {
1967 : error = -EFAULT;
1968 : goto out;
1969 : }
1970 0 : if (opt == PR_SET_MM_START_STACK)
1971 0 : mm->start_stack = addr;
1972 0 : else if (opt == PR_SET_MM_ARG_START)
1973 0 : mm->arg_start = addr;
1974 0 : else if (opt == PR_SET_MM_ARG_END)
1975 0 : mm->arg_end = addr;
1976 0 : else if (opt == PR_SET_MM_ENV_START)
1977 0 : mm->env_start = addr;
1978 0 : else if (opt == PR_SET_MM_ENV_END)
1979 0 : mm->env_end = addr;
1980 : break;
1981 :
1982 : /*
1983 : * This doesn't move auxiliary vector itself
1984 : * since it's pinned to mm_struct, but allow
1985 : * to fill vector with new values. It's up
1986 : * to a caller to provide sane values here
1987 : * otherwise user space tools which use this
1988 : * vector might be unhappy.
1989 : */
1990 : case PR_SET_MM_AUXV: {
1991 : unsigned long user_auxv[AT_VECTOR_SIZE];
1992 :
1993 0 : if (arg4 > sizeof(user_auxv))
1994 : goto out;
1995 0 : up_read(&mm->mmap_sem);
1996 :
1997 0 : if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1998 0 : return -EFAULT;
1999 :
2000 : /* Make sure the last entry is always AT_NULL */
2001 0 : user_auxv[AT_VECTOR_SIZE - 2] = 0;
2002 0 : user_auxv[AT_VECTOR_SIZE - 1] = 0;
2003 :
2004 : BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2005 :
2006 : task_lock(current);
2007 0 : memcpy(mm->saved_auxv, user_auxv, arg4);
2008 : task_unlock(current);
2009 :
2010 : return 0;
2011 : }
2012 : default:
2013 : goto out;
2014 : }
2015 :
2016 : error = 0;
2017 : out:
2018 0 : up_read(&mm->mmap_sem);
2019 0 : return error;
2020 : }
2021 :
2022 : #ifdef CONFIG_CHECKPOINT_RESTORE
2023 : static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2024 : {
2025 : return put_user(me->clear_child_tid, tid_addr);
2026 : }
2027 : #else
2028 0 : static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2029 : {
2030 0 : return -EINVAL;
2031 : }
2032 : #endif
2033 :
2034 356 : SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2035 : unsigned long, arg4, unsigned long, arg5)
2036 : {
2037 178 : struct task_struct *me = current;
2038 : unsigned char comm[sizeof(me->comm)];
2039 : long error;
2040 :
2041 : error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2042 178 : if (error != -ENOSYS)
2043 : return error;
2044 :
2045 : error = 0;
2046 177 : switch (option) {
2047 : case PR_SET_PDEATHSIG:
2048 114 : if (!valid_signal(arg2)) {
2049 : error = -EINVAL;
2050 : break;
2051 : }
2052 114 : me->pdeath_signal = arg2;
2053 : break;
2054 : case PR_GET_PDEATHSIG:
2055 0 : error = put_user(me->pdeath_signal, (int __user *)arg2);
2056 : break;
2057 : case PR_GET_DUMPABLE:
2058 62 : error = get_dumpable(me->mm);
2059 : break;
2060 : case PR_SET_DUMPABLE:
2061 0 : if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2062 : error = -EINVAL;
2063 : break;
2064 : }
2065 0 : set_dumpable(me->mm, arg2);
2066 : break;
2067 :
2068 : case PR_SET_UNALIGN:
2069 : error = SET_UNALIGN_CTL(me, arg2);
2070 : break;
2071 : case PR_GET_UNALIGN:
2072 : error = GET_UNALIGN_CTL(me, arg2);
2073 : break;
2074 : case PR_SET_FPEMU:
2075 : error = SET_FPEMU_CTL(me, arg2);
2076 : break;
2077 : case PR_GET_FPEMU:
2078 : error = GET_FPEMU_CTL(me, arg2);
2079 : break;
2080 : case PR_SET_FPEXC:
2081 : error = SET_FPEXC_CTL(me, arg2);
2082 : break;
2083 : case PR_GET_FPEXC:
2084 : error = GET_FPEXC_CTL(me, arg2);
2085 : break;
2086 : case PR_GET_TIMING:
2087 : error = PR_TIMING_STATISTICAL;
2088 : break;
2089 : case PR_SET_TIMING:
2090 0 : if (arg2 != PR_TIMING_STATISTICAL)
2091 : error = -EINVAL;
2092 : break;
2093 : case PR_SET_NAME:
2094 1 : comm[sizeof(me->comm) - 1] = 0;
2095 1 : if (strncpy_from_user(comm, (char __user *)arg2,
2096 : sizeof(me->comm) - 1) < 0)
2097 : return -EFAULT;
2098 : set_task_comm(me, comm);
2099 : proc_comm_connector(me);
2100 : break;
2101 : case PR_GET_NAME:
2102 0 : get_task_comm(comm, me);
2103 0 : if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2104 : return -EFAULT;
2105 : break;
2106 : case PR_GET_ENDIAN:
2107 : error = GET_ENDIAN(me, arg2);
2108 : break;
2109 : case PR_SET_ENDIAN:
2110 : error = SET_ENDIAN(me, arg2);
2111 : break;
2112 : case PR_GET_SECCOMP:
2113 0 : error = prctl_get_seccomp();
2114 : break;
2115 : case PR_SET_SECCOMP:
2116 0 : error = prctl_set_seccomp(arg2, (char __user *)arg3);
2117 : break;
2118 : case PR_GET_TSC:
2119 : error = GET_TSC_CTL(arg2);
2120 : break;
2121 : case PR_SET_TSC:
2122 : error = SET_TSC_CTL(arg2);
2123 : break;
2124 : case PR_TASK_PERF_EVENTS_DISABLE:
2125 0 : error = perf_event_task_disable();
2126 : break;
2127 : case PR_TASK_PERF_EVENTS_ENABLE:
2128 0 : error = perf_event_task_enable();
2129 : break;
2130 : case PR_GET_TIMERSLACK:
2131 0 : error = current->timer_slack_ns;
2132 : break;
2133 : case PR_SET_TIMERSLACK:
2134 0 : if (arg2 <= 0)
2135 0 : current->timer_slack_ns =
2136 0 : current->default_timer_slack_ns;
2137 : else
2138 0 : current->timer_slack_ns = arg2;
2139 : break;
2140 : case PR_MCE_KILL:
2141 0 : if (arg4 | arg5)
2142 : return -EINVAL;
2143 0 : switch (arg2) {
2144 : case PR_MCE_KILL_CLEAR:
2145 0 : if (arg3 != 0)
2146 : return -EINVAL;
2147 0 : current->flags &= ~PF_MCE_PROCESS;
2148 : break;
2149 : case PR_MCE_KILL_SET:
2150 0 : current->flags |= PF_MCE_PROCESS;
2151 0 : if (arg3 == PR_MCE_KILL_EARLY)
2152 0 : current->flags |= PF_MCE_EARLY;
2153 0 : else if (arg3 == PR_MCE_KILL_LATE)
2154 0 : current->flags &= ~PF_MCE_EARLY;
2155 0 : else if (arg3 == PR_MCE_KILL_DEFAULT)
2156 0 : current->flags &=
2157 : ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2158 : else
2159 : return -EINVAL;
2160 : break;
2161 : default:
2162 : return -EINVAL;
2163 : }
2164 : break;
2165 : case PR_MCE_KILL_GET:
2166 0 : if (arg2 | arg3 | arg4 | arg5)
2167 : return -EINVAL;
2168 0 : if (current->flags & PF_MCE_PROCESS)
2169 0 : error = (current->flags & PF_MCE_EARLY) ?
2170 0 : PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2171 : else
2172 : error = PR_MCE_KILL_DEFAULT;
2173 : break;
2174 : case PR_SET_MM:
2175 0 : error = prctl_set_mm(arg2, arg3, arg4, arg5);
2176 : break;
2177 : case PR_GET_TID_ADDRESS:
2178 0 : error = prctl_get_tid_address(me, (int __user **)arg2);
2179 : break;
2180 : case PR_SET_CHILD_SUBREAPER:
2181 0 : me->signal->is_child_subreaper = !!arg2;
2182 : break;
2183 : case PR_GET_CHILD_SUBREAPER:
2184 0 : error = put_user(me->signal->is_child_subreaper,
2185 : (int __user *)arg2);
2186 : break;
2187 : case PR_SET_NO_NEW_PRIVS:
2188 0 : if (arg2 != 1 || arg3 || arg4 || arg5)
2189 : return -EINVAL;
2190 :
2191 0 : task_set_no_new_privs(current);
2192 : break;
2193 : case PR_GET_NO_NEW_PRIVS:
2194 0 : if (arg2 || arg3 || arg4 || arg5)
2195 : return -EINVAL;
2196 0 : return task_no_new_privs(current) ? 1 : 0;
2197 : case PR_GET_THP_DISABLE:
2198 0 : if (arg2 || arg3 || arg4 || arg5)
2199 : return -EINVAL;
2200 0 : error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2201 : break;
2202 : case PR_SET_THP_DISABLE:
2203 0 : if (arg3 || arg4 || arg5)
2204 : return -EINVAL;
2205 0 : down_write(&me->mm->mmap_sem);
2206 0 : if (arg2)
2207 0 : me->mm->def_flags |= VM_NOHUGEPAGE;
2208 : else
2209 0 : me->mm->def_flags &= ~VM_NOHUGEPAGE;
2210 0 : up_write(&me->mm->mmap_sem);
2211 : break;
2212 : case PR_MPX_ENABLE_MANAGEMENT:
2213 0 : if (arg2 || arg3 || arg4 || arg5)
2214 : return -EINVAL;
2215 : error = MPX_ENABLE_MANAGEMENT(me);
2216 : break;
2217 : case PR_MPX_DISABLE_MANAGEMENT:
2218 0 : if (arg2 || arg3 || arg4 || arg5)
2219 : return -EINVAL;
2220 : error = MPX_DISABLE_MANAGEMENT(me);
2221 : break;
2222 : default:
2223 : error = -EINVAL;
2224 : break;
2225 : }
2226 : return error;
2227 : }
2228 :
2229 0 : SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2230 : struct getcpu_cache __user *, unused)
2231 : {
2232 : int err = 0;
2233 : int cpu = raw_smp_processor_id();
2234 :
2235 0 : if (cpup)
2236 0 : err |= put_user(cpu, cpup);
2237 0 : if (nodep)
2238 0 : err |= put_user(cpu_to_node(cpu), nodep);
2239 0 : return err ? -EFAULT : 0;
2240 : }
2241 :
2242 : /**
2243 : * do_sysinfo - fill in sysinfo struct
2244 : * @info: pointer to buffer to fill
2245 : */
2246 0 : static int do_sysinfo(struct sysinfo *info)
2247 : {
2248 : unsigned long mem_total, sav_total;
2249 : unsigned int mem_unit, bitcount;
2250 : struct timespec tp;
2251 :
2252 0 : memset(info, 0, sizeof(struct sysinfo));
2253 :
2254 : get_monotonic_boottime(&tp);
2255 0 : info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2256 :
2257 0 : get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2258 :
2259 0 : info->procs = nr_threads;
2260 :
2261 0 : si_meminfo(info);
2262 0 : si_swapinfo(info);
2263 :
2264 : /*
2265 : * If the sum of all the available memory (i.e. ram + swap)
2266 : * is less than can be stored in a 32 bit unsigned long then
2267 : * we can be binary compatible with 2.2.x kernels. If not,
2268 : * well, in that case 2.2.x was broken anyways...
2269 : *
2270 : * -Erik Andersen <andersee@debian.org>
2271 : */
2272 :
2273 0 : mem_total = info->totalram + info->totalswap;
2274 0 : if (mem_total < info->totalram || mem_total < info->totalswap)
2275 : goto out;
2276 : bitcount = 0;
2277 0 : mem_unit = info->mem_unit;
2278 0 : while (mem_unit > 1) {
2279 0 : bitcount++;
2280 0 : mem_unit >>= 1;
2281 : sav_total = mem_total;
2282 0 : mem_total <<= 1;
2283 0 : if (mem_total < sav_total)
2284 : goto out;
2285 : }
2286 :
2287 : /*
2288 : * If mem_total did not overflow, multiply all memory values by
2289 : * info->mem_unit and set it to 1. This leaves things compatible
2290 : * with 2.2.x, and also retains compatibility with earlier 2.4.x
2291 : * kernels...
2292 : */
2293 :
2294 0 : info->mem_unit = 1;
2295 0 : info->totalram <<= bitcount;
2296 0 : info->freeram <<= bitcount;
2297 0 : info->sharedram <<= bitcount;
2298 0 : info->bufferram <<= bitcount;
2299 0 : info->totalswap <<= bitcount;
2300 0 : info->freeswap <<= bitcount;
2301 0 : info->totalhigh <<= bitcount;
2302 0 : info->freehigh <<= bitcount;
2303 :
2304 : out:
2305 0 : return 0;
2306 : }
2307 :
2308 0 : SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2309 : {
2310 : struct sysinfo val;
2311 :
2312 0 : do_sysinfo(&val);
2313 :
2314 0 : if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2315 : return -EFAULT;
2316 :
2317 : return 0;
2318 : }
2319 :
2320 : #ifdef CONFIG_COMPAT
2321 : struct compat_sysinfo {
2322 : s32 uptime;
2323 : u32 loads[3];
2324 : u32 totalram;
2325 : u32 freeram;
2326 : u32 sharedram;
2327 : u32 bufferram;
2328 : u32 totalswap;
2329 : u32 freeswap;
2330 : u16 procs;
2331 : u16 pad;
2332 : u32 totalhigh;
2333 : u32 freehigh;
2334 : u32 mem_unit;
2335 : char _f[20-2*sizeof(u32)-sizeof(int)];
2336 : };
2337 :
2338 : COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2339 : {
2340 : struct sysinfo s;
2341 :
2342 : do_sysinfo(&s);
2343 :
2344 : /* Check to see if any memory value is too large for 32-bit and scale
2345 : * down if needed
2346 : */
2347 : if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2348 : int bitcount = 0;
2349 :
2350 : while (s.mem_unit < PAGE_SIZE) {
2351 : s.mem_unit <<= 1;
2352 : bitcount++;
2353 : }
2354 :
2355 : s.totalram >>= bitcount;
2356 : s.freeram >>= bitcount;
2357 : s.sharedram >>= bitcount;
2358 : s.bufferram >>= bitcount;
2359 : s.totalswap >>= bitcount;
2360 : s.freeswap >>= bitcount;
2361 : s.totalhigh >>= bitcount;
2362 : s.freehigh >>= bitcount;
2363 : }
2364 :
2365 : if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2366 : __put_user(s.uptime, &info->uptime) ||
2367 : __put_user(s.loads[0], &info->loads[0]) ||
2368 : __put_user(s.loads[1], &info->loads[1]) ||
2369 : __put_user(s.loads[2], &info->loads[2]) ||
2370 : __put_user(s.totalram, &info->totalram) ||
2371 : __put_user(s.freeram, &info->freeram) ||
2372 : __put_user(s.sharedram, &info->sharedram) ||
2373 : __put_user(s.bufferram, &info->bufferram) ||
2374 : __put_user(s.totalswap, &info->totalswap) ||
2375 : __put_user(s.freeswap, &info->freeswap) ||
2376 : __put_user(s.procs, &info->procs) ||
2377 : __put_user(s.totalhigh, &info->totalhigh) ||
2378 : __put_user(s.freehigh, &info->freehigh) ||
2379 : __put_user(s.mem_unit, &info->mem_unit))
2380 : return -EFAULT;
2381 :
2382 : return 0;
2383 : }
2384 : #endif /* CONFIG_COMPAT */
|