LCOV - code coverage report
Current view: top level - kernel - pid_namespace.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 11 121 9.1 %
Date: 2015-04-12 14:34:49 Functions: 4 14 28.6 %

          Line data    Source code
       1             : /*
       2             :  * Pid namespaces
       3             :  *
       4             :  * Authors:
       5             :  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
       6             :  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
       7             :  *     Many thanks to Oleg Nesterov for comments and help
       8             :  *
       9             :  */
      10             : 
      11             : #include <linux/pid.h>
      12             : #include <linux/pid_namespace.h>
      13             : #include <linux/user_namespace.h>
      14             : #include <linux/syscalls.h>
      15             : #include <linux/err.h>
      16             : #include <linux/acct.h>
      17             : #include <linux/slab.h>
      18             : #include <linux/proc_ns.h>
      19             : #include <linux/reboot.h>
      20             : #include <linux/export.h>
      21             : 
      22             : struct pid_cache {
      23             :         int nr_ids;
      24             :         char name[16];
      25             :         struct kmem_cache *cachep;
      26             :         struct list_head list;
      27             : };
      28             : 
      29             : static LIST_HEAD(pid_caches_lh);
      30             : static DEFINE_MUTEX(pid_caches_mutex);
      31             : static struct kmem_cache *pid_ns_cachep;
      32             : 
      33             : /*
      34             :  * creates the kmem cache to allocate pids from.
      35             :  * @nr_ids: the number of numerical ids this pid will have to carry
      36             :  */
      37             : 
      38           0 : static struct kmem_cache *create_pid_cachep(int nr_ids)
      39             : {
      40             :         struct pid_cache *pcache;
      41             :         struct kmem_cache *cachep;
      42             : 
      43           0 :         mutex_lock(&pid_caches_mutex);
      44           0 :         list_for_each_entry(pcache, &pid_caches_lh, list)
      45           0 :                 if (pcache->nr_ids == nr_ids)
      46             :                         goto out;
      47             : 
      48             :         pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
      49           0 :         if (pcache == NULL)
      50             :                 goto err_alloc;
      51             : 
      52           0 :         snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
      53           0 :         cachep = kmem_cache_create(pcache->name,
      54           0 :                         sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
      55             :                         0, SLAB_HWCACHE_ALIGN, NULL);
      56           0 :         if (cachep == NULL)
      57             :                 goto err_cachep;
      58             : 
      59           0 :         pcache->nr_ids = nr_ids;
      60           0 :         pcache->cachep = cachep;
      61           0 :         list_add(&pcache->list, &pid_caches_lh);
      62             : out:
      63           0 :         mutex_unlock(&pid_caches_mutex);
      64           0 :         return pcache->cachep;
      65             : 
      66             : err_cachep:
      67           0 :         kfree(pcache);
      68             : err_alloc:
      69           0 :         mutex_unlock(&pid_caches_mutex);
      70           0 :         return NULL;
      71             : }
      72             : 
      73           0 : static void proc_cleanup_work(struct work_struct *work)
      74             : {
      75           0 :         struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
      76           0 :         pid_ns_release_proc(ns);
      77           0 : }
      78             : 
      79             : /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
      80             : #define MAX_PID_NS_LEVEL 32
      81             : 
      82           0 : static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
      83             :         struct pid_namespace *parent_pid_ns)
      84             : {
      85             :         struct pid_namespace *ns;
      86           0 :         unsigned int level = parent_pid_ns->level + 1;
      87             :         int i;
      88             :         int err;
      89             : 
      90           0 :         if (level > MAX_PID_NS_LEVEL) {
      91             :                 err = -EINVAL;
      92             :                 goto out;
      93             :         }
      94             : 
      95             :         err = -ENOMEM;
      96           0 :         ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
      97           0 :         if (ns == NULL)
      98             :                 goto out;
      99             : 
     100           0 :         ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
     101           0 :         if (!ns->pidmap[0].page)
     102             :                 goto out_free;
     103             : 
     104           0 :         ns->pid_cachep = create_pid_cachep(level + 1);
     105           0 :         if (ns->pid_cachep == NULL)
     106             :                 goto out_free_map;
     107             : 
     108             :         err = ns_alloc_inum(&ns->ns);
     109           0 :         if (err)
     110             :                 goto out_free_map;
     111           0 :         ns->ns.ops = &pidns_operations;
     112             : 
     113             :         kref_init(&ns->kref);
     114           0 :         ns->level = level;
     115           0 :         ns->parent = get_pid_ns(parent_pid_ns);
     116           0 :         ns->user_ns = get_user_ns(user_ns);
     117           0 :         ns->nr_hashed = PIDNS_HASH_ADDING;
     118           0 :         INIT_WORK(&ns->proc_work, proc_cleanup_work);
     119             : 
     120           0 :         set_bit(0, ns->pidmap[0].page);
     121           0 :         atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
     122             : 
     123             :         for (i = 1; i < PIDMAP_ENTRIES; i++)
     124             :                 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
     125             : 
     126             :         return ns;
     127             : 
     128             : out_free_map:
     129           0 :         kfree(ns->pidmap[0].page);
     130             : out_free:
     131           0 :         kmem_cache_free(pid_ns_cachep, ns);
     132             : out:
     133             :         return ERR_PTR(err);
     134             : }
     135             : 
     136           0 : static void delayed_free_pidns(struct rcu_head *p)
     137             : {
     138           0 :         kmem_cache_free(pid_ns_cachep,
     139           0 :                         container_of(p, struct pid_namespace, rcu));
     140           0 : }
     141             : 
     142           0 : static void destroy_pid_namespace(struct pid_namespace *ns)
     143             : {
     144             :         int i;
     145             : 
     146           0 :         ns_free_inum(&ns->ns);
     147           0 :         for (i = 0; i < PIDMAP_ENTRIES; i++)
     148           0 :                 kfree(ns->pidmap[i].page);
     149             :         put_user_ns(ns->user_ns);
     150           0 :         call_rcu(&ns->rcu, delayed_free_pidns);
     151           0 : }
     152             : 
     153           1 : struct pid_namespace *copy_pid_ns(unsigned long flags,
     154             :         struct user_namespace *user_ns, struct pid_namespace *old_ns)
     155             : {
     156           1 :         if (!(flags & CLONE_NEWPID))
     157           1 :                 return get_pid_ns(old_ns);
     158           0 :         if (task_active_pid_ns(current) != old_ns)
     159             :                 return ERR_PTR(-EINVAL);
     160           0 :         return create_pid_namespace(user_ns, old_ns);
     161             : }
     162             : 
     163           0 : static void free_pid_ns(struct kref *kref)
     164             : {
     165             :         struct pid_namespace *ns;
     166             : 
     167             :         ns = container_of(kref, struct pid_namespace, kref);
     168           0 :         destroy_pid_namespace(ns);
     169           0 : }
     170             : 
     171        2908 : void put_pid_ns(struct pid_namespace *ns)
     172             : {
     173             :         struct pid_namespace *parent;
     174             : 
     175        5816 :         while (ns != &init_pid_ns) {
     176           0 :                 parent = ns->parent;
     177           0 :                 if (!kref_put(&ns->kref, free_pid_ns))
     178             :                         break;
     179             :                 ns = parent;
     180             :         }
     181        2908 : }
     182             : EXPORT_SYMBOL_GPL(put_pid_ns);
     183             : 
     184           0 : void zap_pid_ns_processes(struct pid_namespace *pid_ns)
     185             : {
     186             :         int nr;
     187             :         int rc;
     188           0 :         struct task_struct *task, *me = current;
     189           0 :         int init_pids = thread_group_leader(me) ? 1 : 2;
     190             : 
     191             :         /* Don't allow any more processes into the pid namespace */
     192           0 :         disable_pid_allocation(pid_ns);
     193             : 
     194             :         /*
     195             :          * Ignore SIGCHLD causing any terminated children to autoreap.
     196             :          * This speeds up the namespace shutdown, plus see the comment
     197             :          * below.
     198             :          */
     199             :         spin_lock_irq(&me->sighand->siglock);
     200           0 :         me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
     201             :         spin_unlock_irq(&me->sighand->siglock);
     202             : 
     203             :         /*
     204             :          * The last thread in the cgroup-init thread group is terminating.
     205             :          * Find remaining pid_ts in the namespace, signal and wait for them
     206             :          * to exit.
     207             :          *
     208             :          * Note:  This signals each threads in the namespace - even those that
     209             :          *        belong to the same thread group, To avoid this, we would have
     210             :          *        to walk the entire tasklist looking a processes in this
     211             :          *        namespace, but that could be unnecessarily expensive if the
     212             :          *        pid namespace has just a few processes. Or we need to
     213             :          *        maintain a tasklist for each pid namespace.
     214             :          *
     215             :          */
     216           0 :         read_lock(&tasklist_lock);
     217           0 :         nr = next_pidmap(pid_ns, 1);
     218           0 :         while (nr > 0) {
     219             :                 rcu_read_lock();
     220             : 
     221           0 :                 task = pid_task(find_vpid(nr), PIDTYPE_PID);
     222           0 :                 if (task && !__fatal_signal_pending(task))
     223           0 :                         send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
     224             : 
     225             :                 rcu_read_unlock();
     226             : 
     227           0 :                 nr = next_pidmap(pid_ns, nr);
     228             :         }
     229           0 :         read_unlock(&tasklist_lock);
     230             : 
     231             :         /*
     232             :          * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
     233             :          * sys_wait4() will also block until our children traced from the
     234             :          * parent namespace are detached and become EXIT_DEAD.
     235             :          */
     236             :         do {
     237             :                 clear_thread_flag(TIF_SIGPENDING);
     238           0 :                 rc = sys_wait4(-1, NULL, __WALL, NULL);
     239           0 :         } while (rc != -ECHILD);
     240             : 
     241             :         /*
     242             :          * sys_wait4() above can't reap the EXIT_DEAD children but we do not
     243             :          * really care, we could reparent them to the global init. We could
     244             :          * exit and reap ->child_reaper even if it is not the last thread in
     245             :          * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
     246             :          * pid_ns can not go away until proc_kill_sb() drops the reference.
     247             :          *
     248             :          * But this ns can also have other tasks injected by setns()+fork().
     249             :          * Again, ignoring the user visible semantics we do not really need
     250             :          * to wait until they are all reaped, but they can be reparented to
     251             :          * us and thus we need to ensure that pid->child_reaper stays valid
     252             :          * until they all go away. See free_pid()->wake_up_process().
     253             :          *
     254             :          * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
     255             :          * if reparented.
     256             :          */
     257             :         for (;;) {
     258           0 :                 set_current_state(TASK_UNINTERRUPTIBLE);
     259           0 :                 if (pid_ns->nr_hashed == init_pids)
     260             :                         break;
     261           0 :                 schedule();
     262           0 :         }
     263           0 :         __set_current_state(TASK_RUNNING);
     264             : 
     265           0 :         if (pid_ns->reboot)
     266           0 :                 current->signal->group_exit_code = pid_ns->reboot;
     267             : 
     268           0 :         acct_exit_ns(pid_ns);
     269           0 :         return;
     270             : }
     271             : 
     272             : #ifdef CONFIG_CHECKPOINT_RESTORE
     273             : static int pid_ns_ctl_handler(struct ctl_table *table, int write,
     274             :                 void __user *buffer, size_t *lenp, loff_t *ppos)
     275             : {
     276             :         struct pid_namespace *pid_ns = task_active_pid_ns(current);
     277             :         struct ctl_table tmp = *table;
     278             : 
     279             :         if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
     280             :                 return -EPERM;
     281             : 
     282             :         /*
     283             :          * Writing directly to ns' last_pid field is OK, since this field
     284             :          * is volatile in a living namespace anyway and a code writing to
     285             :          * it should synchronize its usage with external means.
     286             :          */
     287             : 
     288             :         tmp.data = &pid_ns->last_pid;
     289             :         return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
     290             : }
     291             : 
     292             : extern int pid_max;
     293             : static int zero = 0;
     294             : static struct ctl_table pid_ns_ctl_table[] = {
     295             :         {
     296             :                 .procname = "ns_last_pid",
     297             :                 .maxlen = sizeof(int),
     298             :                 .mode = 0666, /* permissions are checked in the handler */
     299             :                 .proc_handler = pid_ns_ctl_handler,
     300             :                 .extra1 = &zero,
     301             :                 .extra2 = &pid_max,
     302             :         },
     303             :         { }
     304             : };
     305             : static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
     306             : #endif  /* CONFIG_CHECKPOINT_RESTORE */
     307             : 
     308           1 : int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
     309             : {
     310           1 :         if (pid_ns == &init_pid_ns)
     311             :                 return 0;
     312             : 
     313           0 :         switch (cmd) {
     314             :         case LINUX_REBOOT_CMD_RESTART2:
     315             :         case LINUX_REBOOT_CMD_RESTART:
     316           0 :                 pid_ns->reboot = SIGHUP;
     317           0 :                 break;
     318             : 
     319             :         case LINUX_REBOOT_CMD_POWER_OFF:
     320             :         case LINUX_REBOOT_CMD_HALT:
     321           0 :                 pid_ns->reboot = SIGINT;
     322           0 :                 break;
     323             :         default:
     324             :                 return -EINVAL;
     325             :         }
     326             : 
     327           0 :         read_lock(&tasklist_lock);
     328           0 :         force_sig(SIGKILL, pid_ns->child_reaper);
     329           0 :         read_unlock(&tasklist_lock);
     330             : 
     331           0 :         do_exit(0);
     332             : 
     333             :         /* Not reached */
     334             :         return 0;
     335             : }
     336             : 
     337             : static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
     338             : {
     339             :         return container_of(ns, struct pid_namespace, ns);
     340             : }
     341             : 
     342           0 : static struct ns_common *pidns_get(struct task_struct *task)
     343             : {
     344             :         struct pid_namespace *ns;
     345             : 
     346             :         rcu_read_lock();
     347           0 :         ns = task_active_pid_ns(task);
     348           0 :         if (ns)
     349             :                 get_pid_ns(ns);
     350             :         rcu_read_unlock();
     351             : 
     352           0 :         return ns ? &ns->ns : NULL;
     353             : }
     354             : 
     355           0 : static void pidns_put(struct ns_common *ns)
     356             : {
     357           0 :         put_pid_ns(to_pid_ns(ns));
     358           0 : }
     359             : 
     360           0 : static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
     361             : {
     362           0 :         struct pid_namespace *active = task_active_pid_ns(current);
     363           0 :         struct pid_namespace *ancestor, *new = to_pid_ns(ns);
     364             : 
     365           0 :         if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
     366           0 :             !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
     367             :                 return -EPERM;
     368             : 
     369             :         /*
     370             :          * Only allow entering the current active pid namespace
     371             :          * or a child of the current active pid namespace.
     372             :          *
     373             :          * This is required for fork to return a usable pid value and
     374             :          * this maintains the property that processes and their
     375             :          * children can not escape their current pid namespace.
     376             :          */
     377           0 :         if (new->level < active->level)
     378             :                 return -EINVAL;
     379             : 
     380             :         ancestor = new;
     381           0 :         while (ancestor->level > active->level)
     382           0 :                 ancestor = ancestor->parent;
     383           0 :         if (ancestor != active)
     384             :                 return -EINVAL;
     385             : 
     386           0 :         put_pid_ns(nsproxy->pid_ns_for_children);
     387           0 :         nsproxy->pid_ns_for_children = get_pid_ns(new);
     388           0 :         return 0;
     389             : }
     390             : 
     391             : const struct proc_ns_operations pidns_operations = {
     392             :         .name           = "pid",
     393             :         .type           = CLONE_NEWPID,
     394             :         .get            = pidns_get,
     395             :         .put            = pidns_put,
     396             :         .install        = pidns_install,
     397             : };
     398             : 
     399           1 : static __init int pid_namespaces_init(void)
     400             : {
     401           1 :         pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
     402             : 
     403             : #ifdef CONFIG_CHECKPOINT_RESTORE
     404             :         register_sysctl_paths(kern_path, pid_ns_ctl_table);
     405             : #endif
     406           1 :         return 0;
     407             : }
     408             : 
     409             : __initcall(pid_namespaces_init);

Generated by: LCOV version 1.11