LCOV - code coverage report
Current view: top level - kernel - kexec.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 90 549 16.4 %
Date: 2015-04-12 14:34:49 Functions: 8 45 17.8 %

          Line data    Source code
       1             : /*
       2             :  * kexec.c - kexec system call
       3             :  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
       4             :  *
       5             :  * This source code is licensed under the GNU General Public License,
       6             :  * Version 2.  See the file COPYING for more details.
       7             :  */
       8             : 
       9             : #define pr_fmt(fmt)     "kexec: " fmt
      10             : 
      11             : #include <linux/capability.h>
      12             : #include <linux/mm.h>
      13             : #include <linux/file.h>
      14             : #include <linux/slab.h>
      15             : #include <linux/fs.h>
      16             : #include <linux/kexec.h>
      17             : #include <linux/mutex.h>
      18             : #include <linux/list.h>
      19             : #include <linux/highmem.h>
      20             : #include <linux/syscalls.h>
      21             : #include <linux/reboot.h>
      22             : #include <linux/ioport.h>
      23             : #include <linux/hardirq.h>
      24             : #include <linux/elf.h>
      25             : #include <linux/elfcore.h>
      26             : #include <linux/utsname.h>
      27             : #include <linux/numa.h>
      28             : #include <linux/suspend.h>
      29             : #include <linux/device.h>
      30             : #include <linux/freezer.h>
      31             : #include <linux/pm.h>
      32             : #include <linux/cpu.h>
      33             : #include <linux/console.h>
      34             : #include <linux/vmalloc.h>
      35             : #include <linux/swap.h>
      36             : #include <linux/syscore_ops.h>
      37             : #include <linux/compiler.h>
      38             : #include <linux/hugetlb.h>
      39             : 
      40             : #include <asm/page.h>
      41             : #include <asm/uaccess.h>
      42             : #include <asm/io.h>
      43             : #include <asm/sections.h>
      44             : 
      45             : #include <crypto/hash.h>
      46             : #include <crypto/sha.h>
      47             : 
      48             : /* Per cpu memory for storing cpu states in case of system crash. */
      49             : note_buf_t __percpu *crash_notes;
      50             : 
      51             : /* vmcoreinfo stuff */
      52             : static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
      53             : u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
      54             : size_t vmcoreinfo_size;
      55             : size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
      56             : 
      57             : /* Flag to indicate we are going to kexec a new kernel */
      58             : bool kexec_in_progress = false;
      59             : 
      60             : /*
      61             :  * Declare these symbols weak so that if architecture provides a purgatory,
      62             :  * these will be overridden.
      63             :  */
      64             : char __weak kexec_purgatory[0];
      65             : size_t __weak kexec_purgatory_size = 0;
      66             : 
      67             : #ifdef CONFIG_KEXEC_FILE
      68             : static int kexec_calculate_store_digests(struct kimage *image);
      69             : #endif
      70             : 
      71             : /* Location of the reserved area for the crash kernel */
      72             : struct resource crashk_res = {
      73             :         .name  = "Crash kernel",
      74             :         .start = 0,
      75             :         .end   = 0,
      76             :         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
      77             : };
      78             : struct resource crashk_low_res = {
      79             :         .name  = "Crash kernel",
      80             :         .start = 0,
      81             :         .end   = 0,
      82             :         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
      83             : };
      84             : 
      85           0 : int kexec_should_crash(struct task_struct *p)
      86             : {
      87           0 :         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
      88             :                 return 1;
      89           0 :         return 0;
      90             : }
      91             : 
      92             : /*
      93             :  * When kexec transitions to the new kernel there is a one-to-one
      94             :  * mapping between physical and virtual addresses.  On processors
      95             :  * where you can disable the MMU this is trivial, and easy.  For
      96             :  * others it is still a simple predictable page table to setup.
      97             :  *
      98             :  * In that environment kexec copies the new kernel to its final
      99             :  * resting place.  This means I can only support memory whose
     100             :  * physical address can fit in an unsigned long.  In particular
     101             :  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
     102             :  * If the assembly stub has more restrictive requirements
     103             :  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
     104             :  * defined more restrictively in <asm/kexec.h>.
     105             :  *
     106             :  * The code for the transition from the current kernel to the
     107             :  * the new kernel is placed in the control_code_buffer, whose size
     108             :  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
     109             :  * page of memory is necessary, but some architectures require more.
     110             :  * Because this memory must be identity mapped in the transition from
     111             :  * virtual to physical addresses it must live in the range
     112             :  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
     113             :  * modifiable.
     114             :  *
     115             :  * The assembly stub in the control code buffer is passed a linked list
     116             :  * of descriptor pages detailing the source pages of the new kernel,
     117             :  * and the destination addresses of those source pages.  As this data
     118             :  * structure is not used in the context of the current OS, it must
     119             :  * be self-contained.
     120             :  *
     121             :  * The code has been made to work with highmem pages and will use a
     122             :  * destination page in its final resting place (if it happens
     123             :  * to allocate it).  The end product of this is that most of the
     124             :  * physical address space, and most of RAM can be used.
     125             :  *
     126             :  * Future directions include:
     127             :  *  - allocating a page table with the control code buffer identity
     128             :  *    mapped, to simplify machine_kexec and make kexec_on_panic more
     129             :  *    reliable.
     130             :  */
     131             : 
     132             : /*
     133             :  * KIMAGE_NO_DEST is an impossible destination address..., for
     134             :  * allocating pages whose destination address we do not care about.
     135             :  */
     136             : #define KIMAGE_NO_DEST (-1UL)
     137             : 
     138             : static int kimage_is_destination_range(struct kimage *image,
     139             :                                        unsigned long start, unsigned long end);
     140             : static struct page *kimage_alloc_page(struct kimage *image,
     141             :                                        gfp_t gfp_mask,
     142             :                                        unsigned long dest);
     143             : 
     144           0 : static int copy_user_segment_list(struct kimage *image,
     145             :                                   unsigned long nr_segments,
     146             :                                   struct kexec_segment __user *segments)
     147             : {
     148             :         int ret;
     149             :         size_t segment_bytes;
     150             : 
     151             :         /* Read in the segments */
     152           0 :         image->nr_segments = nr_segments;
     153           0 :         segment_bytes = nr_segments * sizeof(*segments);
     154           0 :         ret = copy_from_user(image->segment, segments, segment_bytes);
     155           0 :         if (ret)
     156             :                 ret = -EFAULT;
     157             : 
     158           0 :         return ret;
     159             : }
     160             : 
     161           0 : static int sanity_check_segment_list(struct kimage *image)
     162             : {
     163             :         int result, i;
     164           0 :         unsigned long nr_segments = image->nr_segments;
     165             : 
     166             :         /*
     167             :          * Verify we have good destination addresses.  The caller is
     168             :          * responsible for making certain we don't attempt to load
     169             :          * the new image into invalid or reserved areas of RAM.  This
     170             :          * just verifies it is an address we can use.
     171             :          *
     172             :          * Since the kernel does everything in page size chunks ensure
     173             :          * the destination addresses are page aligned.  Too many
     174             :          * special cases crop of when we don't do this.  The most
     175             :          * insidious is getting overlapping destination addresses
     176             :          * simply because addresses are changed to page size
     177             :          * granularity.
     178             :          */
     179             :         result = -EADDRNOTAVAIL;
     180           0 :         for (i = 0; i < nr_segments; i++) {
     181             :                 unsigned long mstart, mend;
     182             : 
     183           0 :                 mstart = image->segment[i].mem;
     184           0 :                 mend   = mstart + image->segment[i].memsz;
     185           0 :                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
     186             :                         return result;
     187           0 :                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
     188             :                         return result;
     189             :         }
     190             : 
     191             :         /* Verify our destination addresses do not overlap.
     192             :          * If we alloed overlapping destination addresses
     193             :          * through very weird things can happen with no
     194             :          * easy explanation as one segment stops on another.
     195             :          */
     196             :         result = -EINVAL;
     197           0 :         for (i = 0; i < nr_segments; i++) {
     198             :                 unsigned long mstart, mend;
     199             :                 unsigned long j;
     200             : 
     201           0 :                 mstart = image->segment[i].mem;
     202           0 :                 mend   = mstart + image->segment[i].memsz;
     203           0 :                 for (j = 0; j < i; j++) {
     204             :                         unsigned long pstart, pend;
     205           0 :                         pstart = image->segment[j].mem;
     206           0 :                         pend   = pstart + image->segment[j].memsz;
     207             :                         /* Do the segments overlap ? */
     208           0 :                         if ((mend > pstart) && (mstart < pend))
     209             :                                 return result;
     210             :                 }
     211             :         }
     212             : 
     213             :         /* Ensure our buffer sizes are strictly less than
     214             :          * our memory sizes.  This should always be the case,
     215             :          * and it is easier to check up front than to be surprised
     216             :          * later on.
     217             :          */
     218             :         result = -EINVAL;
     219           0 :         for (i = 0; i < nr_segments; i++) {
     220           0 :                 if (image->segment[i].bufsz > image->segment[i].memsz)
     221             :                         return result;
     222             :         }
     223             : 
     224             :         /*
     225             :          * Verify we have good destination addresses.  Normally
     226             :          * the caller is responsible for making certain we don't
     227             :          * attempt to load the new image into invalid or reserved
     228             :          * areas of RAM.  But crash kernels are preloaded into a
     229             :          * reserved area of ram.  We must ensure the addresses
     230             :          * are in the reserved area otherwise preloading the
     231             :          * kernel could corrupt things.
     232             :          */
     233             : 
     234           0 :         if (image->type == KEXEC_TYPE_CRASH) {
     235             :                 result = -EADDRNOTAVAIL;
     236           0 :                 for (i = 0; i < nr_segments; i++) {
     237             :                         unsigned long mstart, mend;
     238             : 
     239           0 :                         mstart = image->segment[i].mem;
     240           0 :                         mend = mstart + image->segment[i].memsz - 1;
     241             :                         /* Ensure we are within the crash kernel limits */
     242           0 :                         if ((mstart < crashk_res.start) ||
     243           0 :                             (mend > crashk_res.end))
     244             :                                 return result;
     245             :                 }
     246             :         }
     247             : 
     248             :         return 0;
     249             : }
     250             : 
     251           0 : static struct kimage *do_kimage_alloc_init(void)
     252             : {
     253             :         struct kimage *image;
     254             : 
     255             :         /* Allocate a controlling structure */
     256             :         image = kzalloc(sizeof(*image), GFP_KERNEL);
     257           0 :         if (!image)
     258             :                 return NULL;
     259             : 
     260           0 :         image->head = 0;
     261           0 :         image->entry = &image->head;
     262           0 :         image->last_entry = &image->head;
     263           0 :         image->control_page = ~0; /* By default this does not apply */
     264           0 :         image->type = KEXEC_TYPE_DEFAULT;
     265             : 
     266             :         /* Initialize the list of control pages */
     267           0 :         INIT_LIST_HEAD(&image->control_pages);
     268             : 
     269             :         /* Initialize the list of destination pages */
     270           0 :         INIT_LIST_HEAD(&image->dest_pages);
     271             : 
     272             :         /* Initialize the list of unusable pages */
     273           0 :         INIT_LIST_HEAD(&image->unusable_pages);
     274             : 
     275           0 :         return image;
     276             : }
     277             : 
     278             : static void kimage_free_page_list(struct list_head *list);
     279             : 
     280           0 : static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
     281             :                              unsigned long nr_segments,
     282             :                              struct kexec_segment __user *segments,
     283             :                              unsigned long flags)
     284             : {
     285             :         int ret;
     286             :         struct kimage *image;
     287           0 :         bool kexec_on_panic = flags & KEXEC_ON_CRASH;
     288             : 
     289           0 :         if (kexec_on_panic) {
     290             :                 /* Verify we have a valid entry point */
     291           0 :                 if ((entry < crashk_res.start) || (entry > crashk_res.end))
     292             :                         return -EADDRNOTAVAIL;
     293             :         }
     294             : 
     295             :         /* Allocate and initialize a controlling structure */
     296           0 :         image = do_kimage_alloc_init();
     297           0 :         if (!image)
     298             :                 return -ENOMEM;
     299             : 
     300           0 :         image->start = entry;
     301             : 
     302           0 :         ret = copy_user_segment_list(image, nr_segments, segments);
     303           0 :         if (ret)
     304             :                 goto out_free_image;
     305             : 
     306           0 :         ret = sanity_check_segment_list(image);
     307           0 :         if (ret)
     308             :                 goto out_free_image;
     309             : 
     310             :          /* Enable the special crash kernel control page allocation policy. */
     311           0 :         if (kexec_on_panic) {
     312           0 :                 image->control_page = crashk_res.start;
     313           0 :                 image->type = KEXEC_TYPE_CRASH;
     314             :         }
     315             : 
     316             :         /*
     317             :          * Find a location for the control code buffer, and add it
     318             :          * the vector of segments so that it's pages will also be
     319             :          * counted as destination pages.
     320             :          */
     321             :         ret = -ENOMEM;
     322           0 :         image->control_code_page = kimage_alloc_control_pages(image,
     323             :                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
     324           0 :         if (!image->control_code_page) {
     325           0 :                 pr_err("Could not allocate control_code_buffer\n");
     326           0 :                 goto out_free_image;
     327             :         }
     328             : 
     329           0 :         if (!kexec_on_panic) {
     330           0 :                 image->swap_page = kimage_alloc_control_pages(image, 0);
     331           0 :                 if (!image->swap_page) {
     332           0 :                         pr_err("Could not allocate swap buffer\n");
     333             :                         goto out_free_control_pages;
     334             :                 }
     335             :         }
     336             : 
     337           0 :         *rimage = image;
     338           0 :         return 0;
     339             : out_free_control_pages:
     340           0 :         kimage_free_page_list(&image->control_pages);
     341             : out_free_image:
     342           0 :         kfree(image);
     343           0 :         return ret;
     344             : }
     345             : 
     346             : #ifdef CONFIG_KEXEC_FILE
     347             : static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
     348             : {
     349             :         struct fd f = fdget(fd);
     350             :         int ret;
     351             :         struct kstat stat;
     352             :         loff_t pos;
     353             :         ssize_t bytes = 0;
     354             : 
     355             :         if (!f.file)
     356             :                 return -EBADF;
     357             : 
     358             :         ret = vfs_getattr(&f.file->f_path, &stat);
     359             :         if (ret)
     360             :                 goto out;
     361             : 
     362             :         if (stat.size > INT_MAX) {
     363             :                 ret = -EFBIG;
     364             :                 goto out;
     365             :         }
     366             : 
     367             :         /* Don't hand 0 to vmalloc, it whines. */
     368             :         if (stat.size == 0) {
     369             :                 ret = -EINVAL;
     370             :                 goto out;
     371             :         }
     372             : 
     373             :         *buf = vmalloc(stat.size);
     374             :         if (!*buf) {
     375             :                 ret = -ENOMEM;
     376             :                 goto out;
     377             :         }
     378             : 
     379             :         pos = 0;
     380             :         while (pos < stat.size) {
     381             :                 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
     382             :                                     stat.size - pos);
     383             :                 if (bytes < 0) {
     384             :                         vfree(*buf);
     385             :                         ret = bytes;
     386             :                         goto out;
     387             :                 }
     388             : 
     389             :                 if (bytes == 0)
     390             :                         break;
     391             :                 pos += bytes;
     392             :         }
     393             : 
     394             :         if (pos != stat.size) {
     395             :                 ret = -EBADF;
     396             :                 vfree(*buf);
     397             :                 goto out;
     398             :         }
     399             : 
     400             :         *buf_len = pos;
     401             : out:
     402             :         fdput(f);
     403             :         return ret;
     404             : }
     405             : 
     406             : /* Architectures can provide this probe function */
     407             : int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
     408             :                                          unsigned long buf_len)
     409             : {
     410             :         return -ENOEXEC;
     411             : }
     412             : 
     413             : void * __weak arch_kexec_kernel_image_load(struct kimage *image)
     414             : {
     415             :         return ERR_PTR(-ENOEXEC);
     416             : }
     417             : 
     418             : void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
     419             : {
     420             : }
     421             : 
     422             : int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
     423             :                                         unsigned long buf_len)
     424             : {
     425             :         return -EKEYREJECTED;
     426             : }
     427             : 
     428             : /* Apply relocations of type RELA */
     429             : int __weak
     430             : arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
     431             :                                  unsigned int relsec)
     432             : {
     433             :         pr_err("RELA relocation unsupported.\n");
     434             :         return -ENOEXEC;
     435             : }
     436             : 
     437             : /* Apply relocations of type REL */
     438             : int __weak
     439             : arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
     440             :                              unsigned int relsec)
     441             : {
     442             :         pr_err("REL relocation unsupported.\n");
     443             :         return -ENOEXEC;
     444             : }
     445             : 
     446             : /*
     447             :  * Free up memory used by kernel, initrd, and comand line. This is temporary
     448             :  * memory allocation which is not needed any more after these buffers have
     449             :  * been loaded into separate segments and have been copied elsewhere.
     450             :  */
     451             : static void kimage_file_post_load_cleanup(struct kimage *image)
     452             : {
     453             :         struct purgatory_info *pi = &image->purgatory_info;
     454             : 
     455             :         vfree(image->kernel_buf);
     456             :         image->kernel_buf = NULL;
     457             : 
     458             :         vfree(image->initrd_buf);
     459             :         image->initrd_buf = NULL;
     460             : 
     461             :         kfree(image->cmdline_buf);
     462             :         image->cmdline_buf = NULL;
     463             : 
     464             :         vfree(pi->purgatory_buf);
     465             :         pi->purgatory_buf = NULL;
     466             : 
     467             :         vfree(pi->sechdrs);
     468             :         pi->sechdrs = NULL;
     469             : 
     470             :         /* See if architecture has anything to cleanup post load */
     471             :         arch_kimage_file_post_load_cleanup(image);
     472             : 
     473             :         /*
     474             :          * Above call should have called into bootloader to free up
     475             :          * any data stored in kimage->image_loader_data. It should
     476             :          * be ok now to free it up.
     477             :          */
     478             :         kfree(image->image_loader_data);
     479             :         image->image_loader_data = NULL;
     480             : }
     481             : 
     482             : /*
     483             :  * In file mode list of segments is prepared by kernel. Copy relevant
     484             :  * data from user space, do error checking, prepare segment list
     485             :  */
     486             : static int
     487             : kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
     488             :                              const char __user *cmdline_ptr,
     489             :                              unsigned long cmdline_len, unsigned flags)
     490             : {
     491             :         int ret = 0;
     492             :         void *ldata;
     493             : 
     494             :         ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
     495             :                                 &image->kernel_buf_len);
     496             :         if (ret)
     497             :                 return ret;
     498             : 
     499             :         /* Call arch image probe handlers */
     500             :         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
     501             :                                             image->kernel_buf_len);
     502             : 
     503             :         if (ret)
     504             :                 goto out;
     505             : 
     506             : #ifdef CONFIG_KEXEC_VERIFY_SIG
     507             :         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
     508             :                                            image->kernel_buf_len);
     509             :         if (ret) {
     510             :                 pr_debug("kernel signature verification failed.\n");
     511             :                 goto out;
     512             :         }
     513             :         pr_debug("kernel signature verification successful.\n");
     514             : #endif
     515             :         /* It is possible that there no initramfs is being loaded */
     516             :         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
     517             :                 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
     518             :                                         &image->initrd_buf_len);
     519             :                 if (ret)
     520             :                         goto out;
     521             :         }
     522             : 
     523             :         if (cmdline_len) {
     524             :                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
     525             :                 if (!image->cmdline_buf) {
     526             :                         ret = -ENOMEM;
     527             :                         goto out;
     528             :                 }
     529             : 
     530             :                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
     531             :                                      cmdline_len);
     532             :                 if (ret) {
     533             :                         ret = -EFAULT;
     534             :                         goto out;
     535             :                 }
     536             : 
     537             :                 image->cmdline_buf_len = cmdline_len;
     538             : 
     539             :                 /* command line should be a string with last byte null */
     540             :                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
     541             :                         ret = -EINVAL;
     542             :                         goto out;
     543             :                 }
     544             :         }
     545             : 
     546             :         /* Call arch image load handlers */
     547             :         ldata = arch_kexec_kernel_image_load(image);
     548             : 
     549             :         if (IS_ERR(ldata)) {
     550             :                 ret = PTR_ERR(ldata);
     551             :                 goto out;
     552             :         }
     553             : 
     554             :         image->image_loader_data = ldata;
     555             : out:
     556             :         /* In case of error, free up all allocated memory in this function */
     557             :         if (ret)
     558             :                 kimage_file_post_load_cleanup(image);
     559             :         return ret;
     560             : }
     561             : 
     562             : static int
     563             : kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
     564             :                        int initrd_fd, const char __user *cmdline_ptr,
     565             :                        unsigned long cmdline_len, unsigned long flags)
     566             : {
     567             :         int ret;
     568             :         struct kimage *image;
     569             :         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
     570             : 
     571             :         image = do_kimage_alloc_init();
     572             :         if (!image)
     573             :                 return -ENOMEM;
     574             : 
     575             :         image->file_mode = 1;
     576             : 
     577             :         if (kexec_on_panic) {
     578             :                 /* Enable special crash kernel control page alloc policy. */
     579             :                 image->control_page = crashk_res.start;
     580             :                 image->type = KEXEC_TYPE_CRASH;
     581             :         }
     582             : 
     583             :         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
     584             :                                            cmdline_ptr, cmdline_len, flags);
     585             :         if (ret)
     586             :                 goto out_free_image;
     587             : 
     588             :         ret = sanity_check_segment_list(image);
     589             :         if (ret)
     590             :                 goto out_free_post_load_bufs;
     591             : 
     592             :         ret = -ENOMEM;
     593             :         image->control_code_page = kimage_alloc_control_pages(image,
     594             :                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
     595             :         if (!image->control_code_page) {
     596             :                 pr_err("Could not allocate control_code_buffer\n");
     597             :                 goto out_free_post_load_bufs;
     598             :         }
     599             : 
     600             :         if (!kexec_on_panic) {
     601             :                 image->swap_page = kimage_alloc_control_pages(image, 0);
     602             :                 if (!image->swap_page) {
     603             :                         pr_err("Could not allocate swap buffer\n");
     604             :                         goto out_free_control_pages;
     605             :                 }
     606             :         }
     607             : 
     608             :         *rimage = image;
     609             :         return 0;
     610             : out_free_control_pages:
     611             :         kimage_free_page_list(&image->control_pages);
     612             : out_free_post_load_bufs:
     613             :         kimage_file_post_load_cleanup(image);
     614             : out_free_image:
     615             :         kfree(image);
     616             :         return ret;
     617             : }
     618             : #else /* CONFIG_KEXEC_FILE */
     619             : static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
     620             : #endif /* CONFIG_KEXEC_FILE */
     621             : 
     622             : static int kimage_is_destination_range(struct kimage *image,
     623             :                                         unsigned long start,
     624             :                                         unsigned long end)
     625             : {
     626             :         unsigned long i;
     627             : 
     628           0 :         for (i = 0; i < image->nr_segments; i++) {
     629             :                 unsigned long mstart, mend;
     630             : 
     631           0 :                 mstart = image->segment[i].mem;
     632           0 :                 mend = mstart + image->segment[i].memsz;
     633           0 :                 if ((end > mstart) && (start < mend))
     634             :                         return 1;
     635             :         }
     636             : 
     637             :         return 0;
     638             : }
     639             : 
     640           0 : static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
     641             : {
     642             :         struct page *pages;
     643             : 
     644             :         pages = alloc_pages(gfp_mask, order);
     645           0 :         if (pages) {
     646             :                 unsigned int count, i;
     647           0 :                 pages->mapping = NULL;
     648           0 :                 set_page_private(pages, order);
     649           0 :                 count = 1 << order;
     650           0 :                 for (i = 0; i < count; i++)
     651           0 :                         SetPageReserved(pages + i);
     652             :         }
     653             : 
     654           0 :         return pages;
     655             : }
     656             : 
     657           0 : static void kimage_free_pages(struct page *page)
     658             : {
     659             :         unsigned int order, count, i;
     660             : 
     661           0 :         order = page_private(page);
     662           0 :         count = 1 << order;
     663           0 :         for (i = 0; i < count; i++)
     664           0 :                 ClearPageReserved(page + i);
     665           0 :         __free_pages(page, order);
     666           0 : }
     667             : 
     668           0 : static void kimage_free_page_list(struct list_head *list)
     669             : {
     670             :         struct list_head *pos, *next;
     671             : 
     672           0 :         list_for_each_safe(pos, next, list) {
     673             :                 struct page *page;
     674             : 
     675           0 :                 page = list_entry(pos, struct page, lru);
     676             :                 list_del(&page->lru);
     677           0 :                 kimage_free_pages(page);
     678             :         }
     679           0 : }
     680             : 
     681           0 : static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
     682             :                                                         unsigned int order)
     683             : {
     684             :         /* Control pages are special, they are the intermediaries
     685             :          * that are needed while we copy the rest of the pages
     686             :          * to their final resting place.  As such they must
     687             :          * not conflict with either the destination addresses
     688             :          * or memory the kernel is already using.
     689             :          *
     690             :          * The only case where we really need more than one of
     691             :          * these are for architectures where we cannot disable
     692             :          * the MMU and must instead generate an identity mapped
     693             :          * page table for all of the memory.
     694             :          *
     695             :          * At worst this runs in O(N) of the image size.
     696             :          */
     697             :         struct list_head extra_pages;
     698             :         struct page *pages;
     699             :         unsigned int count;
     700             : 
     701           0 :         count = 1 << order;
     702             :         INIT_LIST_HEAD(&extra_pages);
     703             : 
     704             :         /* Loop while I can allocate a page and the page allocated
     705             :          * is a destination page.
     706             :          */
     707             :         do {
     708             :                 unsigned long pfn, epfn, addr, eaddr;
     709             : 
     710           0 :                 pages = kimage_alloc_pages(GFP_KERNEL, order);
     711           0 :                 if (!pages)
     712             :                         break;
     713           0 :                 pfn   = page_to_pfn(pages);
     714           0 :                 epfn  = pfn + count;
     715           0 :                 addr  = pfn << PAGE_SHIFT;
     716           0 :                 eaddr = epfn << PAGE_SHIFT;
     717           0 :                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
     718             :                               kimage_is_destination_range(image, addr, eaddr)) {
     719           0 :                         list_add(&pages->lru, &extra_pages);
     720             :                         pages = NULL;
     721             :                 }
     722           0 :         } while (!pages);
     723             : 
     724           0 :         if (pages) {
     725             :                 /* Remember the allocated page... */
     726           0 :                 list_add(&pages->lru, &image->control_pages);
     727             : 
     728             :                 /* Because the page is already in it's destination
     729             :                  * location we will never allocate another page at
     730             :                  * that address.  Therefore kimage_alloc_pages
     731             :                  * will not return it (again) and we don't need
     732             :                  * to give it an entry in image->segment[].
     733             :                  */
     734             :         }
     735             :         /* Deal with the destination pages I have inadvertently allocated.
     736             :          *
     737             :          * Ideally I would convert multi-page allocations into single
     738             :          * page allocations, and add everything to image->dest_pages.
     739             :          *
     740             :          * For now it is simpler to just free the pages.
     741             :          */
     742           0 :         kimage_free_page_list(&extra_pages);
     743             : 
     744           0 :         return pages;
     745             : }
     746             : 
     747           0 : static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
     748             :                                                       unsigned int order)
     749             : {
     750             :         /* Control pages are special, they are the intermediaries
     751             :          * that are needed while we copy the rest of the pages
     752             :          * to their final resting place.  As such they must
     753             :          * not conflict with either the destination addresses
     754             :          * or memory the kernel is already using.
     755             :          *
     756             :          * Control pages are also the only pags we must allocate
     757             :          * when loading a crash kernel.  All of the other pages
     758             :          * are specified by the segments and we just memcpy
     759             :          * into them directly.
     760             :          *
     761             :          * The only case where we really need more than one of
     762             :          * these are for architectures where we cannot disable
     763             :          * the MMU and must instead generate an identity mapped
     764             :          * page table for all of the memory.
     765             :          *
     766             :          * Given the low demand this implements a very simple
     767             :          * allocator that finds the first hole of the appropriate
     768             :          * size in the reserved memory region, and allocates all
     769             :          * of the memory up to and including the hole.
     770             :          */
     771             :         unsigned long hole_start, hole_end, size;
     772             :         struct page *pages;
     773             : 
     774             :         pages = NULL;
     775           0 :         size = (1 << order) << PAGE_SHIFT;
     776           0 :         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
     777           0 :         hole_end   = hole_start + size - 1;
     778           0 :         while (hole_end <= crashk_res.end) {
     779             :                 unsigned long i;
     780             : 
     781             :                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
     782             :                         break;
     783             :                 /* See if I overlap any of the segments */
     784           0 :                 for (i = 0; i < image->nr_segments; i++) {
     785             :                         unsigned long mstart, mend;
     786             : 
     787           0 :                         mstart = image->segment[i].mem;
     788           0 :                         mend   = mstart + image->segment[i].memsz - 1;
     789           0 :                         if ((hole_end >= mstart) && (hole_start <= mend)) {
     790             :                                 /* Advance the hole to the end of the segment */
     791           0 :                                 hole_start = (mend + (size - 1)) & ~(size - 1);
     792           0 :                                 hole_end   = hole_start + size - 1;
     793           0 :                                 break;
     794             :                         }
     795             :                 }
     796             :                 /* If I don't overlap any segments I have found my hole! */
     797           0 :                 if (i == image->nr_segments) {
     798           0 :                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
     799           0 :                         break;
     800             :                 }
     801             :         }
     802           0 :         if (pages)
     803           0 :                 image->control_page = hole_end;
     804             : 
     805           0 :         return pages;
     806             : }
     807             : 
     808             : 
     809           0 : struct page *kimage_alloc_control_pages(struct kimage *image,
     810             :                                          unsigned int order)
     811             : {
     812             :         struct page *pages = NULL;
     813             : 
     814           0 :         switch (image->type) {
     815             :         case KEXEC_TYPE_DEFAULT:
     816           0 :                 pages = kimage_alloc_normal_control_pages(image, order);
     817           0 :                 break;
     818             :         case KEXEC_TYPE_CRASH:
     819           0 :                 pages = kimage_alloc_crash_control_pages(image, order);
     820           0 :                 break;
     821             :         }
     822             : 
     823           0 :         return pages;
     824             : }
     825             : 
     826           0 : static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
     827             : {
     828           0 :         if (*image->entry != 0)
     829           0 :                 image->entry++;
     830             : 
     831           0 :         if (image->entry == image->last_entry) {
     832             :                 kimage_entry_t *ind_page;
     833             :                 struct page *page;
     834             : 
     835           0 :                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
     836           0 :                 if (!page)
     837             :                         return -ENOMEM;
     838             : 
     839             :                 ind_page = page_address(page);
     840           0 :                 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
     841           0 :                 image->entry = ind_page;
     842           0 :                 image->last_entry = ind_page +
     843             :                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
     844             :         }
     845           0 :         *image->entry = entry;
     846           0 :         image->entry++;
     847           0 :         *image->entry = 0;
     848             : 
     849           0 :         return 0;
     850             : }
     851             : 
     852             : static int kimage_set_destination(struct kimage *image,
     853             :                                    unsigned long destination)
     854             : {
     855             :         int result;
     856             : 
     857           0 :         destination &= PAGE_MASK;
     858           0 :         result = kimage_add_entry(image, destination | IND_DESTINATION);
     859           0 :         if (result == 0)
     860           0 :                 image->destination = destination;
     861             : 
     862             :         return result;
     863             : }
     864             : 
     865             : 
     866           0 : static int kimage_add_page(struct kimage *image, unsigned long page)
     867             : {
     868             :         int result;
     869             : 
     870           0 :         page &= PAGE_MASK;
     871           0 :         result = kimage_add_entry(image, page | IND_SOURCE);
     872           0 :         if (result == 0)
     873           0 :                 image->destination += PAGE_SIZE;
     874             : 
     875           0 :         return result;
     876             : }
     877             : 
     878             : 
     879             : static void kimage_free_extra_pages(struct kimage *image)
     880             : {
     881             :         /* Walk through and free any extra destination pages I may have */
     882           0 :         kimage_free_page_list(&image->dest_pages);
     883             : 
     884             :         /* Walk through and free any unusable pages I have cached */
     885           0 :         kimage_free_page_list(&image->unusable_pages);
     886             : 
     887             : }
     888           0 : static void kimage_terminate(struct kimage *image)
     889             : {
     890           0 :         if (*image->entry != 0)
     891           0 :                 image->entry++;
     892             : 
     893           0 :         *image->entry = IND_DONE;
     894           0 : }
     895             : 
     896             : #define for_each_kimage_entry(image, ptr, entry) \
     897             :         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
     898             :                 ptr = (entry & IND_INDIRECTION) ? \
     899             :                         phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
     900             : 
     901             : static void kimage_free_entry(kimage_entry_t entry)
     902             : {
     903             :         struct page *page;
     904             : 
     905           0 :         page = pfn_to_page(entry >> PAGE_SHIFT);
     906           0 :         kimage_free_pages(page);
     907             : }
     908             : 
     909           0 : static void kimage_free(struct kimage *image)
     910             : {
     911             :         kimage_entry_t *ptr, entry;
     912             :         kimage_entry_t ind = 0;
     913             : 
     914           0 :         if (!image)
     915           0 :                 return;
     916             : 
     917             :         kimage_free_extra_pages(image);
     918           0 :         for_each_kimage_entry(image, ptr, entry) {
     919           0 :                 if (entry & IND_INDIRECTION) {
     920             :                         /* Free the previous indirection page */
     921           0 :                         if (ind & IND_INDIRECTION)
     922             :                                 kimage_free_entry(ind);
     923             :                         /* Save this indirection page until we are
     924             :                          * done with it.
     925             :                          */
     926             :                         ind = entry;
     927           0 :                 } else if (entry & IND_SOURCE)
     928             :                         kimage_free_entry(entry);
     929             :         }
     930             :         /* Free the final indirection page */
     931           0 :         if (ind & IND_INDIRECTION)
     932             :                 kimage_free_entry(ind);
     933             : 
     934             :         /* Handle any machine specific cleanup */
     935           0 :         machine_kexec_cleanup(image);
     936             : 
     937             :         /* Free the kexec control pages... */
     938           0 :         kimage_free_page_list(&image->control_pages);
     939             : 
     940             :         /*
     941             :          * Free up any temporary buffers allocated. This might hit if
     942             :          * error occurred much later after buffer allocation.
     943             :          */
     944             :         if (image->file_mode)
     945             :                 kimage_file_post_load_cleanup(image);
     946             : 
     947           0 :         kfree(image);
     948             : }
     949             : 
     950           0 : static kimage_entry_t *kimage_dst_used(struct kimage *image,
     951             :                                         unsigned long page)
     952             : {
     953             :         kimage_entry_t *ptr, entry;
     954             :         unsigned long destination = 0;
     955             : 
     956           0 :         for_each_kimage_entry(image, ptr, entry) {
     957           0 :                 if (entry & IND_DESTINATION)
     958           0 :                         destination = entry & PAGE_MASK;
     959           0 :                 else if (entry & IND_SOURCE) {
     960           0 :                         if (page == destination)
     961             :                                 return ptr;
     962           0 :                         destination += PAGE_SIZE;
     963             :                 }
     964             :         }
     965             : 
     966             :         return NULL;
     967             : }
     968             : 
     969           0 : static struct page *kimage_alloc_page(struct kimage *image,
     970             :                                         gfp_t gfp_mask,
     971             :                                         unsigned long destination)
     972             : {
     973             :         /*
     974             :          * Here we implement safeguards to ensure that a source page
     975             :          * is not copied to its destination page before the data on
     976             :          * the destination page is no longer useful.
     977             :          *
     978             :          * To do this we maintain the invariant that a source page is
     979             :          * either its own destination page, or it is not a
     980             :          * destination page at all.
     981             :          *
     982             :          * That is slightly stronger than required, but the proof
     983             :          * that no problems will not occur is trivial, and the
     984             :          * implementation is simply to verify.
     985             :          *
     986             :          * When allocating all pages normally this algorithm will run
     987             :          * in O(N) time, but in the worst case it will run in O(N^2)
     988             :          * time.   If the runtime is a problem the data structures can
     989             :          * be fixed.
     990             :          */
     991             :         struct page *page;
     992             :         unsigned long addr;
     993             : 
     994             :         /*
     995             :          * Walk through the list of destination pages, and see if I
     996             :          * have a match.
     997             :          */
     998           0 :         list_for_each_entry(page, &image->dest_pages, lru) {
     999           0 :                 addr = page_to_pfn(page) << PAGE_SHIFT;
    1000           0 :                 if (addr == destination) {
    1001             :                         list_del(&page->lru);
    1002           0 :                         return page;
    1003             :                 }
    1004             :         }
    1005             :         page = NULL;
    1006             :         while (1) {
    1007             :                 kimage_entry_t *old;
    1008             : 
    1009             :                 /* Allocate a page, if we run out of memory give up */
    1010           0 :                 page = kimage_alloc_pages(gfp_mask, 0);
    1011           0 :                 if (!page)
    1012             :                         return NULL;
    1013             :                 /* If the page cannot be used file it away */
    1014           0 :                 if (page_to_pfn(page) >
    1015             :                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
    1016           0 :                         list_add(&page->lru, &image->unusable_pages);
    1017           0 :                         continue;
    1018             :                 }
    1019           0 :                 addr = page_to_pfn(page) << PAGE_SHIFT;
    1020             : 
    1021             :                 /* If it is the destination page we want use it */
    1022           0 :                 if (addr == destination)
    1023             :                         break;
    1024             : 
    1025             :                 /* If the page is not a destination page use it */
    1026           0 :                 if (!kimage_is_destination_range(image, addr,
    1027             :                                                   addr + PAGE_SIZE))
    1028             :                         break;
    1029             : 
    1030             :                 /*
    1031             :                  * I know that the page is someones destination page.
    1032             :                  * See if there is already a source page for this
    1033             :                  * destination page.  And if so swap the source pages.
    1034             :                  */
    1035           0 :                 old = kimage_dst_used(image, addr);
    1036           0 :                 if (old) {
    1037             :                         /* If so move it */
    1038             :                         unsigned long old_addr;
    1039             :                         struct page *old_page;
    1040             : 
    1041           0 :                         old_addr = *old & PAGE_MASK;
    1042           0 :                         old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
    1043             :                         copy_highpage(page, old_page);
    1044           0 :                         *old = addr | (*old & ~PAGE_MASK);
    1045             : 
    1046             :                         /* The old page I have found cannot be a
    1047             :                          * destination page, so return it if it's
    1048             :                          * gfp_flags honor the ones passed in.
    1049             :                          */
    1050             :                         if (!(gfp_mask & __GFP_HIGHMEM) &&
    1051             :                             PageHighMem(old_page)) {
    1052             :                                 kimage_free_pages(old_page);
    1053             :                                 continue;
    1054             :                         }
    1055             :                         addr = old_addr;
    1056             :                         page = old_page;
    1057           0 :                         break;
    1058             :                 } else {
    1059             :                         /* Place the page on the destination list I
    1060             :                          * will use it later.
    1061             :                          */
    1062           0 :                         list_add(&page->lru, &image->dest_pages);
    1063             :                 }
    1064             :         }
    1065             : 
    1066           0 :         return page;
    1067             : }
    1068             : 
    1069           0 : static int kimage_load_normal_segment(struct kimage *image,
    1070             :                                          struct kexec_segment *segment)
    1071             : {
    1072             :         unsigned long maddr;
    1073             :         size_t ubytes, mbytes;
    1074             :         int result;
    1075             :         unsigned char __user *buf = NULL;
    1076             :         unsigned char *kbuf = NULL;
    1077             : 
    1078             :         result = 0;
    1079           0 :         if (image->file_mode)
    1080           0 :                 kbuf = segment->kbuf;
    1081             :         else
    1082           0 :                 buf = segment->buf;
    1083           0 :         ubytes = segment->bufsz;
    1084           0 :         mbytes = segment->memsz;
    1085           0 :         maddr = segment->mem;
    1086             : 
    1087             :         result = kimage_set_destination(image, maddr);
    1088           0 :         if (result < 0)
    1089             :                 goto out;
    1090             : 
    1091           0 :         while (mbytes) {
    1092             :                 struct page *page;
    1093             :                 char *ptr;
    1094             :                 size_t uchunk, mchunk;
    1095             : 
    1096           0 :                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
    1097           0 :                 if (!page) {
    1098             :                         result  = -ENOMEM;
    1099             :                         goto out;
    1100             :                 }
    1101           0 :                 result = kimage_add_page(image, page_to_pfn(page)
    1102             :                                                                 << PAGE_SHIFT);
    1103           0 :                 if (result < 0)
    1104             :                         goto out;
    1105             : 
    1106             :                 ptr = kmap(page);
    1107             :                 /* Start with a clear page */
    1108           0 :                 clear_page(ptr);
    1109           0 :                 ptr += maddr & ~PAGE_MASK;
    1110           0 :                 mchunk = min_t(size_t, mbytes,
    1111             :                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
    1112           0 :                 uchunk = min(ubytes, mchunk);
    1113             : 
    1114             :                 /* For file based kexec, source pages are in kernel memory */
    1115           0 :                 if (image->file_mode)
    1116           0 :                         memcpy(ptr, kbuf, uchunk);
    1117             :                 else
    1118           0 :                         result = copy_from_user(ptr, buf, uchunk);
    1119             :                 kunmap(page);
    1120           0 :                 if (result) {
    1121             :                         result = -EFAULT;
    1122             :                         goto out;
    1123             :                 }
    1124           0 :                 ubytes -= uchunk;
    1125           0 :                 maddr  += mchunk;
    1126           0 :                 if (image->file_mode)
    1127           0 :                         kbuf += mchunk;
    1128             :                 else
    1129           0 :                         buf += mchunk;
    1130           0 :                 mbytes -= mchunk;
    1131             :         }
    1132             : out:
    1133           0 :         return result;
    1134             : }
    1135             : 
    1136           0 : static int kimage_load_crash_segment(struct kimage *image,
    1137             :                                         struct kexec_segment *segment)
    1138             : {
    1139             :         /* For crash dumps kernels we simply copy the data from
    1140             :          * user space to it's destination.
    1141             :          * We do things a page at a time for the sake of kmap.
    1142             :          */
    1143             :         unsigned long maddr;
    1144             :         size_t ubytes, mbytes;
    1145             :         int result;
    1146             :         unsigned char __user *buf = NULL;
    1147             :         unsigned char *kbuf = NULL;
    1148             : 
    1149             :         result = 0;
    1150           0 :         if (image->file_mode)
    1151           0 :                 kbuf = segment->kbuf;
    1152             :         else
    1153           0 :                 buf = segment->buf;
    1154           0 :         ubytes = segment->bufsz;
    1155           0 :         mbytes = segment->memsz;
    1156           0 :         maddr = segment->mem;
    1157           0 :         while (mbytes) {
    1158             :                 struct page *page;
    1159             :                 char *ptr;
    1160             :                 size_t uchunk, mchunk;
    1161             : 
    1162           0 :                 page = pfn_to_page(maddr >> PAGE_SHIFT);
    1163           0 :                 if (!page) {
    1164             :                         result  = -ENOMEM;
    1165             :                         goto out;
    1166             :                 }
    1167             :                 ptr = kmap(page);
    1168           0 :                 ptr += maddr & ~PAGE_MASK;
    1169           0 :                 mchunk = min_t(size_t, mbytes,
    1170             :                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
    1171           0 :                 uchunk = min(ubytes, mchunk);
    1172           0 :                 if (mchunk > uchunk) {
    1173             :                         /* Zero the trailing part of the page */
    1174           0 :                         memset(ptr + uchunk, 0, mchunk - uchunk);
    1175             :                 }
    1176             : 
    1177             :                 /* For file based kexec, source pages are in kernel memory */
    1178           0 :                 if (image->file_mode)
    1179           0 :                         memcpy(ptr, kbuf, uchunk);
    1180             :                 else
    1181           0 :                         result = copy_from_user(ptr, buf, uchunk);
    1182             :                 kexec_flush_icache_page(page);
    1183             :                 kunmap(page);
    1184           0 :                 if (result) {
    1185             :                         result = -EFAULT;
    1186             :                         goto out;
    1187             :                 }
    1188           0 :                 ubytes -= uchunk;
    1189           0 :                 maddr  += mchunk;
    1190           0 :                 if (image->file_mode)
    1191           0 :                         kbuf += mchunk;
    1192             :                 else
    1193           0 :                         buf += mchunk;
    1194           0 :                 mbytes -= mchunk;
    1195             :         }
    1196             : out:
    1197           0 :         return result;
    1198             : }
    1199             : 
    1200           0 : static int kimage_load_segment(struct kimage *image,
    1201             :                                 struct kexec_segment *segment)
    1202             : {
    1203             :         int result = -ENOMEM;
    1204             : 
    1205           0 :         switch (image->type) {
    1206             :         case KEXEC_TYPE_DEFAULT:
    1207           0 :                 result = kimage_load_normal_segment(image, segment);
    1208           0 :                 break;
    1209             :         case KEXEC_TYPE_CRASH:
    1210           0 :                 result = kimage_load_crash_segment(image, segment);
    1211           0 :                 break;
    1212             :         }
    1213             : 
    1214           0 :         return result;
    1215             : }
    1216             : 
    1217             : /*
    1218             :  * Exec Kernel system call: for obvious reasons only root may call it.
    1219             :  *
    1220             :  * This call breaks up into three pieces.
    1221             :  * - A generic part which loads the new kernel from the current
    1222             :  *   address space, and very carefully places the data in the
    1223             :  *   allocated pages.
    1224             :  *
    1225             :  * - A generic part that interacts with the kernel and tells all of
    1226             :  *   the devices to shut down.  Preventing on-going dmas, and placing
    1227             :  *   the devices in a consistent state so a later kernel can
    1228             :  *   reinitialize them.
    1229             :  *
    1230             :  * - A machine specific part that includes the syscall number
    1231             :  *   and then copies the image to it's final destination.  And
    1232             :  *   jumps into the image at entry.
    1233             :  *
    1234             :  * kexec does not sync, or unmount filesystems so if you need
    1235             :  * that to happen you need to do that yourself.
    1236             :  */
    1237             : struct kimage *kexec_image;
    1238             : struct kimage *kexec_crash_image;
    1239             : int kexec_load_disabled;
    1240             : 
    1241             : static DEFINE_MUTEX(kexec_mutex);
    1242             : 
    1243           0 : SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
    1244             :                 struct kexec_segment __user *, segments, unsigned long, flags)
    1245             : {
    1246             :         struct kimage **dest_image, *image;
    1247             :         int result;
    1248             : 
    1249             :         /* We only trust the superuser with rebooting the system. */
    1250           0 :         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
    1251             :                 return -EPERM;
    1252             : 
    1253             :         /*
    1254             :          * Verify we have a legal set of flags
    1255             :          * This leaves us room for future extensions.
    1256             :          */
    1257           0 :         if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
    1258             :                 return -EINVAL;
    1259             : 
    1260             :         /* Verify we are on the appropriate architecture */
    1261           0 :         if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
    1262             :                 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
    1263             :                 return -EINVAL;
    1264             : 
    1265             :         /* Put an artificial cap on the number
    1266             :          * of segments passed to kexec_load.
    1267             :          */
    1268           0 :         if (nr_segments > KEXEC_SEGMENT_MAX)
    1269             :                 return -EINVAL;
    1270             : 
    1271           0 :         image = NULL;
    1272             :         result = 0;
    1273             : 
    1274             :         /* Because we write directly to the reserved memory
    1275             :          * region when loading crash kernels we need a mutex here to
    1276             :          * prevent multiple crash  kernels from attempting to load
    1277             :          * simultaneously, and to prevent a crash kernel from loading
    1278             :          * over the top of a in use crash kernel.
    1279             :          *
    1280             :          * KISS: always take the mutex.
    1281             :          */
    1282           0 :         if (!mutex_trylock(&kexec_mutex))
    1283             :                 return -EBUSY;
    1284             : 
    1285             :         dest_image = &kexec_image;
    1286           0 :         if (flags & KEXEC_ON_CRASH)
    1287             :                 dest_image = &kexec_crash_image;
    1288           0 :         if (nr_segments > 0) {
    1289             :                 unsigned long i;
    1290             : 
    1291             :                 /* Loading another kernel to reboot into */
    1292           0 :                 if ((flags & KEXEC_ON_CRASH) == 0)
    1293           0 :                         result = kimage_alloc_init(&image, entry, nr_segments,
    1294             :                                                    segments, flags);
    1295             :                 /* Loading another kernel to switch to if this one crashes */
    1296           0 :                 else if (flags & KEXEC_ON_CRASH) {
    1297             :                         /* Free any current crash dump kernel before
    1298             :                          * we corrupt it.
    1299             :                          */
    1300           0 :                         kimage_free(xchg(&kexec_crash_image, NULL));
    1301           0 :                         result = kimage_alloc_init(&image, entry, nr_segments,
    1302             :                                                    segments, flags);
    1303           0 :                         crash_map_reserved_pages();
    1304             :                 }
    1305           0 :                 if (result)
    1306             :                         goto out;
    1307             : 
    1308           0 :                 if (flags & KEXEC_PRESERVE_CONTEXT)
    1309           0 :                         image->preserve_context = 1;
    1310           0 :                 result = machine_kexec_prepare(image);
    1311           0 :                 if (result)
    1312             :                         goto out;
    1313             : 
    1314           0 :                 for (i = 0; i < nr_segments; i++) {
    1315           0 :                         result = kimage_load_segment(image, &image->segment[i]);
    1316           0 :                         if (result)
    1317             :                                 goto out;
    1318             :                 }
    1319           0 :                 kimage_terminate(image);
    1320           0 :                 if (flags & KEXEC_ON_CRASH)
    1321           0 :                         crash_unmap_reserved_pages();
    1322             :         }
    1323             :         /* Install the new kernel, and  Uninstall the old */
    1324           0 :         image = xchg(dest_image, image);
    1325             : 
    1326             : out:
    1327           0 :         mutex_unlock(&kexec_mutex);
    1328           0 :         kimage_free(image);
    1329             : 
    1330             :         return result;
    1331             : }
    1332             : 
    1333             : /*
    1334             :  * Add and remove page tables for crashkernel memory
    1335             :  *
    1336             :  * Provide an empty default implementation here -- architecture
    1337             :  * code may override this
    1338             :  */
    1339           0 : void __weak crash_map_reserved_pages(void)
    1340           0 : {}
    1341             : 
    1342           0 : void __weak crash_unmap_reserved_pages(void)
    1343           0 : {}
    1344             : 
    1345             : #ifdef CONFIG_COMPAT
    1346             : COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
    1347             :                        compat_ulong_t, nr_segments,
    1348             :                        struct compat_kexec_segment __user *, segments,
    1349             :                        compat_ulong_t, flags)
    1350             : {
    1351             :         struct compat_kexec_segment in;
    1352             :         struct kexec_segment out, __user *ksegments;
    1353             :         unsigned long i, result;
    1354             : 
    1355             :         /* Don't allow clients that don't understand the native
    1356             :          * architecture to do anything.
    1357             :          */
    1358             :         if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
    1359             :                 return -EINVAL;
    1360             : 
    1361             :         if (nr_segments > KEXEC_SEGMENT_MAX)
    1362             :                 return -EINVAL;
    1363             : 
    1364             :         ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
    1365             :         for (i = 0; i < nr_segments; i++) {
    1366             :                 result = copy_from_user(&in, &segments[i], sizeof(in));
    1367             :                 if (result)
    1368             :                         return -EFAULT;
    1369             : 
    1370             :                 out.buf   = compat_ptr(in.buf);
    1371             :                 out.bufsz = in.bufsz;
    1372             :                 out.mem   = in.mem;
    1373             :                 out.memsz = in.memsz;
    1374             : 
    1375             :                 result = copy_to_user(&ksegments[i], &out, sizeof(out));
    1376             :                 if (result)
    1377             :                         return -EFAULT;
    1378             :         }
    1379             : 
    1380             :         return sys_kexec_load(entry, nr_segments, ksegments, flags);
    1381             : }
    1382             : #endif
    1383             : 
    1384             : #ifdef CONFIG_KEXEC_FILE
    1385             : SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
    1386             :                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
    1387             :                 unsigned long, flags)
    1388             : {
    1389             :         int ret = 0, i;
    1390             :         struct kimage **dest_image, *image;
    1391             : 
    1392             :         /* We only trust the superuser with rebooting the system. */
    1393             :         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
    1394             :                 return -EPERM;
    1395             : 
    1396             :         /* Make sure we have a legal set of flags */
    1397             :         if (flags != (flags & KEXEC_FILE_FLAGS))
    1398             :                 return -EINVAL;
    1399             : 
    1400             :         image = NULL;
    1401             : 
    1402             :         if (!mutex_trylock(&kexec_mutex))
    1403             :                 return -EBUSY;
    1404             : 
    1405             :         dest_image = &kexec_image;
    1406             :         if (flags & KEXEC_FILE_ON_CRASH)
    1407             :                 dest_image = &kexec_crash_image;
    1408             : 
    1409             :         if (flags & KEXEC_FILE_UNLOAD)
    1410             :                 goto exchange;
    1411             : 
    1412             :         /*
    1413             :          * In case of crash, new kernel gets loaded in reserved region. It is
    1414             :          * same memory where old crash kernel might be loaded. Free any
    1415             :          * current crash dump kernel before we corrupt it.
    1416             :          */
    1417             :         if (flags & KEXEC_FILE_ON_CRASH)
    1418             :                 kimage_free(xchg(&kexec_crash_image, NULL));
    1419             : 
    1420             :         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
    1421             :                                      cmdline_len, flags);
    1422             :         if (ret)
    1423             :                 goto out;
    1424             : 
    1425             :         ret = machine_kexec_prepare(image);
    1426             :         if (ret)
    1427             :                 goto out;
    1428             : 
    1429             :         ret = kexec_calculate_store_digests(image);
    1430             :         if (ret)
    1431             :                 goto out;
    1432             : 
    1433             :         for (i = 0; i < image->nr_segments; i++) {
    1434             :                 struct kexec_segment *ksegment;
    1435             : 
    1436             :                 ksegment = &image->segment[i];
    1437             :                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
    1438             :                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
    1439             :                          ksegment->memsz);
    1440             : 
    1441             :                 ret = kimage_load_segment(image, &image->segment[i]);
    1442             :                 if (ret)
    1443             :                         goto out;
    1444             :         }
    1445             : 
    1446             :         kimage_terminate(image);
    1447             : 
    1448             :         /*
    1449             :          * Free up any temporary buffers allocated which are not needed
    1450             :          * after image has been loaded
    1451             :          */
    1452             :         kimage_file_post_load_cleanup(image);
    1453             : exchange:
    1454             :         image = xchg(dest_image, image);
    1455             : out:
    1456             :         mutex_unlock(&kexec_mutex);
    1457             :         kimage_free(image);
    1458             :         return ret;
    1459             : }
    1460             : 
    1461             : #endif /* CONFIG_KEXEC_FILE */
    1462             : 
    1463           0 : void crash_kexec(struct pt_regs *regs)
    1464             : {
    1465             :         /* Take the kexec_mutex here to prevent sys_kexec_load
    1466             :          * running on one cpu from replacing the crash kernel
    1467             :          * we are using after a panic on a different cpu.
    1468             :          *
    1469             :          * If the crash kernel was not located in a fixed area
    1470             :          * of memory the xchg(&kexec_crash_image) would be
    1471             :          * sufficient.  But since I reuse the memory...
    1472             :          */
    1473           0 :         if (mutex_trylock(&kexec_mutex)) {
    1474           0 :                 if (kexec_crash_image) {
    1475             :                         struct pt_regs fixed_regs;
    1476             : 
    1477             :                         crash_setup_regs(&fixed_regs, regs);
    1478           0 :                         crash_save_vmcoreinfo();
    1479           0 :                         machine_crash_shutdown(&fixed_regs);
    1480           0 :                         machine_kexec(kexec_crash_image);
    1481             :                 }
    1482           0 :                 mutex_unlock(&kexec_mutex);
    1483             :         }
    1484           0 : }
    1485             : 
    1486           0 : size_t crash_get_memory_size(void)
    1487             : {
    1488             :         size_t size = 0;
    1489           0 :         mutex_lock(&kexec_mutex);
    1490           0 :         if (crashk_res.end != crashk_res.start)
    1491             :                 size = resource_size(&crashk_res);
    1492           0 :         mutex_unlock(&kexec_mutex);
    1493           0 :         return size;
    1494             : }
    1495             : 
    1496           0 : void __weak crash_free_reserved_phys_range(unsigned long begin,
    1497             :                                            unsigned long end)
    1498             : {
    1499             :         unsigned long addr;
    1500             : 
    1501           0 :         for (addr = begin; addr < end; addr += PAGE_SIZE)
    1502           0 :                 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
    1503           0 : }
    1504             : 
    1505           0 : int crash_shrink_memory(unsigned long new_size)
    1506             : {
    1507             :         int ret = 0;
    1508             :         unsigned long start, end;
    1509             :         unsigned long old_size;
    1510             :         struct resource *ram_res;
    1511             : 
    1512           0 :         mutex_lock(&kexec_mutex);
    1513             : 
    1514           0 :         if (kexec_crash_image) {
    1515             :                 ret = -ENOENT;
    1516             :                 goto unlock;
    1517             :         }
    1518           0 :         start = crashk_res.start;
    1519           0 :         end = crashk_res.end;
    1520           0 :         old_size = (end == 0) ? 0 : end - start + 1;
    1521           0 :         if (new_size >= old_size) {
    1522           0 :                 ret = (new_size == old_size) ? 0 : -EINVAL;
    1523           0 :                 goto unlock;
    1524             :         }
    1525             : 
    1526             :         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
    1527           0 :         if (!ram_res) {
    1528             :                 ret = -ENOMEM;
    1529             :                 goto unlock;
    1530             :         }
    1531             : 
    1532           0 :         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
    1533           0 :         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
    1534             : 
    1535           0 :         crash_map_reserved_pages();
    1536           0 :         crash_free_reserved_phys_range(end, crashk_res.end);
    1537             : 
    1538           0 :         if ((start == end) && (crashk_res.parent != NULL))
    1539           0 :                 release_resource(&crashk_res);
    1540             : 
    1541           0 :         ram_res->start = end;
    1542           0 :         ram_res->end = crashk_res.end;
    1543           0 :         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
    1544           0 :         ram_res->name = "System RAM";
    1545             : 
    1546           0 :         crashk_res.end = end - 1;
    1547             : 
    1548           0 :         insert_resource(&iomem_resource, ram_res);
    1549           0 :         crash_unmap_reserved_pages();
    1550             : 
    1551             : unlock:
    1552           0 :         mutex_unlock(&kexec_mutex);
    1553           0 :         return ret;
    1554             : }
    1555             : 
    1556           1 : static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
    1557             :                             size_t data_len)
    1558             : {
    1559             :         struct elf_note note;
    1560             : 
    1561           1 :         note.n_namesz = strlen(name) + 1;
    1562           1 :         note.n_descsz = data_len;
    1563           1 :         note.n_type   = type;
    1564           1 :         memcpy(buf, &note, sizeof(note));
    1565           1 :         buf += (sizeof(note) + 3)/4;
    1566           1 :         memcpy(buf, name, note.n_namesz);
    1567           1 :         buf += (note.n_namesz + 3)/4;
    1568           1 :         memcpy(buf, data, note.n_descsz);
    1569           1 :         buf += (note.n_descsz + 3)/4;
    1570             : 
    1571           1 :         return buf;
    1572             : }
    1573             : 
    1574             : static void final_note(u32 *buf)
    1575             : {
    1576             :         struct elf_note note;
    1577             : 
    1578           1 :         note.n_namesz = 0;
    1579           1 :         note.n_descsz = 0;
    1580           1 :         note.n_type   = 0;
    1581           1 :         memcpy(buf, &note, sizeof(note));
    1582             : }
    1583             : 
    1584           0 : void crash_save_cpu(struct pt_regs *regs, int cpu)
    1585             : {
    1586             :         struct elf_prstatus prstatus;
    1587             :         u32 *buf;
    1588             : 
    1589           0 :         if ((cpu < 0) || (cpu >= nr_cpu_ids))
    1590           0 :                 return;
    1591             : 
    1592             :         /* Using ELF notes here is opportunistic.
    1593             :          * I need a well defined structure format
    1594             :          * for the data I pass, and I need tags
    1595             :          * on the data to indicate what information I have
    1596             :          * squirrelled away.  ELF notes happen to provide
    1597             :          * all of that, so there is no need to invent something new.
    1598             :          */
    1599           0 :         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
    1600           0 :         if (!buf)
    1601             :                 return;
    1602           0 :         memset(&prstatus, 0, sizeof(prstatus));
    1603           0 :         prstatus.pr_pid = current->pid;
    1604             :         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
    1605           0 :         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
    1606             :                               &prstatus, sizeof(prstatus));
    1607             :         final_note(buf);
    1608             : }
    1609             : 
    1610           1 : static int __init crash_notes_memory_init(void)
    1611             : {
    1612             :         /* Allocate memory for saving cpu registers. */
    1613           1 :         crash_notes = alloc_percpu(note_buf_t);
    1614           1 :         if (!crash_notes) {
    1615           0 :                 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
    1616           0 :                 return -ENOMEM;
    1617             :         }
    1618             :         return 0;
    1619             : }
    1620             : subsys_initcall(crash_notes_memory_init);
    1621             : 
    1622             : 
    1623             : /*
    1624             :  * parsing the "crashkernel" commandline
    1625             :  *
    1626             :  * this code is intended to be called from architecture specific code
    1627             :  */
    1628             : 
    1629             : 
    1630             : /*
    1631             :  * This function parses command lines in the format
    1632             :  *
    1633             :  *   crashkernel=ramsize-range:size[,...][@offset]
    1634             :  *
    1635             :  * The function returns 0 on success and -EINVAL on failure.
    1636             :  */
    1637           0 : static int __init parse_crashkernel_mem(char *cmdline,
    1638             :                                         unsigned long long system_ram,
    1639             :                                         unsigned long long *crash_size,
    1640             :                                         unsigned long long *crash_base)
    1641             : {
    1642             :         char *cur = cmdline, *tmp;
    1643             : 
    1644             :         /* for each entry of the comma-separated list */
    1645             :         do {
    1646             :                 unsigned long long start, end = ULLONG_MAX, size;
    1647             : 
    1648             :                 /* get the start of the range */
    1649           0 :                 start = memparse(cur, &tmp);
    1650           0 :                 if (cur == tmp) {
    1651           0 :                         pr_warn("crashkernel: Memory value expected\n");
    1652           0 :                         return -EINVAL;
    1653             :                 }
    1654             :                 cur = tmp;
    1655           0 :                 if (*cur != '-') {
    1656           0 :                         pr_warn("crashkernel: '-' expected\n");
    1657           0 :                         return -EINVAL;
    1658             :                 }
    1659           0 :                 cur++;
    1660             : 
    1661             :                 /* if no ':' is here, than we read the end */
    1662           0 :                 if (*cur != ':') {
    1663           0 :                         end = memparse(cur, &tmp);
    1664           0 :                         if (cur == tmp) {
    1665           0 :                                 pr_warn("crashkernel: Memory value expected\n");
    1666           0 :                                 return -EINVAL;
    1667             :                         }
    1668             :                         cur = tmp;
    1669           0 :                         if (end <= start) {
    1670           0 :                                 pr_warn("crashkernel: end <= start\n");
    1671           0 :                                 return -EINVAL;
    1672             :                         }
    1673             :                 }
    1674             : 
    1675           0 :                 if (*cur != ':') {
    1676           0 :                         pr_warn("crashkernel: ':' expected\n");
    1677           0 :                         return -EINVAL;
    1678             :                 }
    1679           0 :                 cur++;
    1680             : 
    1681           0 :                 size = memparse(cur, &tmp);
    1682           0 :                 if (cur == tmp) {
    1683           0 :                         pr_warn("Memory value expected\n");
    1684           0 :                         return -EINVAL;
    1685             :                 }
    1686             :                 cur = tmp;
    1687           0 :                 if (size >= system_ram) {
    1688           0 :                         pr_warn("crashkernel: invalid size\n");
    1689           0 :                         return -EINVAL;
    1690             :                 }
    1691             : 
    1692             :                 /* match ? */
    1693           0 :                 if (system_ram >= start && system_ram < end) {
    1694           0 :                         *crash_size = size;
    1695           0 :                         break;
    1696             :                 }
    1697           0 :         } while (*cur++ == ',');
    1698             : 
    1699           0 :         if (*crash_size > 0) {
    1700           0 :                 while (*cur && *cur != ' ' && *cur != '@')
    1701           0 :                         cur++;
    1702           0 :                 if (*cur == '@') {
    1703           0 :                         cur++;
    1704           0 :                         *crash_base = memparse(cur, &tmp);
    1705           0 :                         if (cur == tmp) {
    1706           0 :                                 pr_warn("Memory value expected after '@'\n");
    1707           0 :                                 return -EINVAL;
    1708             :                         }
    1709             :                 }
    1710             :         }
    1711             : 
    1712             :         return 0;
    1713             : }
    1714             : 
    1715             : /*
    1716             :  * That function parses "simple" (old) crashkernel command lines like
    1717             :  *
    1718             :  *      crashkernel=size[@offset]
    1719             :  *
    1720             :  * It returns 0 on success and -EINVAL on failure.
    1721             :  */
    1722           0 : static int __init parse_crashkernel_simple(char *cmdline,
    1723             :                                            unsigned long long *crash_size,
    1724             :                                            unsigned long long *crash_base)
    1725             : {
    1726           0 :         char *cur = cmdline;
    1727             : 
    1728           0 :         *crash_size = memparse(cmdline, &cur);
    1729           0 :         if (cmdline == cur) {
    1730           0 :                 pr_warn("crashkernel: memory value expected\n");
    1731           0 :                 return -EINVAL;
    1732             :         }
    1733             : 
    1734           0 :         if (*cur == '@')
    1735           0 :                 *crash_base = memparse(cur+1, &cur);
    1736           0 :         else if (*cur != ' ' && *cur != '\0') {
    1737           0 :                 pr_warn("crashkernel: unrecognized char\n");
    1738           0 :                 return -EINVAL;
    1739             :         }
    1740             : 
    1741             :         return 0;
    1742             : }
    1743             : 
    1744             : #define SUFFIX_HIGH 0
    1745             : #define SUFFIX_LOW  1
    1746             : #define SUFFIX_NULL 2
    1747             : static __initdata char *suffix_tbl[] = {
    1748             :         [SUFFIX_HIGH] = ",high",
    1749             :         [SUFFIX_LOW]  = ",low",
    1750             :         [SUFFIX_NULL] = NULL,
    1751             : };
    1752             : 
    1753             : /*
    1754             :  * That function parses "suffix"  crashkernel command lines like
    1755             :  *
    1756             :  *      crashkernel=size,[high|low]
    1757             :  *
    1758             :  * It returns 0 on success and -EINVAL on failure.
    1759             :  */
    1760           0 : static int __init parse_crashkernel_suffix(char *cmdline,
    1761             :                                            unsigned long long   *crash_size,
    1762             :                                            const char *suffix)
    1763             : {
    1764           0 :         char *cur = cmdline;
    1765             : 
    1766           0 :         *crash_size = memparse(cmdline, &cur);
    1767           0 :         if (cmdline == cur) {
    1768           0 :                 pr_warn("crashkernel: memory value expected\n");
    1769           0 :                 return -EINVAL;
    1770             :         }
    1771             : 
    1772             :         /* check with suffix */
    1773           0 :         if (strncmp(cur, suffix, strlen(suffix))) {
    1774           0 :                 pr_warn("crashkernel: unrecognized char\n");
    1775           0 :                 return -EINVAL;
    1776             :         }
    1777           0 :         cur += strlen(suffix);
    1778           0 :         if (*cur != ' ' && *cur != '\0') {
    1779           0 :                 pr_warn("crashkernel: unrecognized char\n");
    1780           0 :                 return -EINVAL;
    1781             :         }
    1782             : 
    1783             :         return 0;
    1784             : }
    1785             : 
    1786           1 : static __init char *get_last_crashkernel(char *cmdline,
    1787             :                              const char *name,
    1788             :                              const char *suffix)
    1789             : {
    1790             :         char *p = cmdline, *ck_cmdline = NULL;
    1791             : 
    1792             :         /* find crashkernel and use the last one if there are more */
    1793           1 :         p = strstr(p, name);
    1794           2 :         while (p) {
    1795           0 :                 char *end_p = strchr(p, ' ');
    1796             :                 char *q;
    1797             : 
    1798           0 :                 if (!end_p)
    1799           0 :                         end_p = p + strlen(p);
    1800             : 
    1801           0 :                 if (!suffix) {
    1802             :                         int i;
    1803             : 
    1804             :                         /* skip the one with any known suffix */
    1805           0 :                         for (i = 0; suffix_tbl[i]; i++) {
    1806           0 :                                 q = end_p - strlen(suffix_tbl[i]);
    1807           0 :                                 if (!strncmp(q, suffix_tbl[i],
    1808             :                                              strlen(suffix_tbl[i])))
    1809             :                                         goto next;
    1810             :                         }
    1811             :                         ck_cmdline = p;
    1812             :                 } else {
    1813           0 :                         q = end_p - strlen(suffix);
    1814           0 :                         if (!strncmp(q, suffix, strlen(suffix)))
    1815             :                                 ck_cmdline = p;
    1816             :                 }
    1817             : next:
    1818           0 :                 p = strstr(p+1, name);
    1819             :         }
    1820             : 
    1821           1 :         if (!ck_cmdline)
    1822             :                 return NULL;
    1823             : 
    1824           0 :         return ck_cmdline;
    1825             : }
    1826             : 
    1827           1 : static int __init __parse_crashkernel(char *cmdline,
    1828             :                              unsigned long long system_ram,
    1829             :                              unsigned long long *crash_size,
    1830             :                              unsigned long long *crash_base,
    1831             :                              const char *name,
    1832             :                              const char *suffix)
    1833             : {
    1834             :         char    *first_colon, *first_space;
    1835             :         char    *ck_cmdline;
    1836             : 
    1837             :         BUG_ON(!crash_size || !crash_base);
    1838           1 :         *crash_size = 0;
    1839           1 :         *crash_base = 0;
    1840             : 
    1841           1 :         ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
    1842             : 
    1843           1 :         if (!ck_cmdline)
    1844             :                 return -EINVAL;
    1845             : 
    1846           0 :         ck_cmdline += strlen(name);
    1847             : 
    1848           0 :         if (suffix)
    1849           0 :                 return parse_crashkernel_suffix(ck_cmdline, crash_size,
    1850             :                                 suffix);
    1851             :         /*
    1852             :          * if the commandline contains a ':', then that's the extended
    1853             :          * syntax -- if not, it must be the classic syntax
    1854             :          */
    1855           0 :         first_colon = strchr(ck_cmdline, ':');
    1856           0 :         first_space = strchr(ck_cmdline, ' ');
    1857           0 :         if (first_colon && (!first_space || first_colon < first_space))
    1858           0 :                 return parse_crashkernel_mem(ck_cmdline, system_ram,
    1859             :                                 crash_size, crash_base);
    1860             : 
    1861           0 :         return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
    1862             : }
    1863             : 
    1864             : /*
    1865             :  * That function is the entry point for command line parsing and should be
    1866             :  * called from the arch-specific code.
    1867             :  */
    1868           1 : int __init parse_crashkernel(char *cmdline,
    1869             :                              unsigned long long system_ram,
    1870             :                              unsigned long long *crash_size,
    1871             :                              unsigned long long *crash_base)
    1872             : {
    1873           1 :         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
    1874             :                                         "crashkernel=", NULL);
    1875             : }
    1876             : 
    1877           0 : int __init parse_crashkernel_high(char *cmdline,
    1878             :                              unsigned long long system_ram,
    1879             :                              unsigned long long *crash_size,
    1880             :                              unsigned long long *crash_base)
    1881             : {
    1882           0 :         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
    1883           0 :                                 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
    1884             : }
    1885             : 
    1886           0 : int __init parse_crashkernel_low(char *cmdline,
    1887             :                              unsigned long long system_ram,
    1888             :                              unsigned long long *crash_size,
    1889             :                              unsigned long long *crash_base)
    1890             : {
    1891           0 :         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
    1892           0 :                                 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
    1893             : }
    1894             : 
    1895           1 : static void update_vmcoreinfo_note(void)
    1896             : {
    1897             :         u32 *buf = vmcoreinfo_note;
    1898             : 
    1899           1 :         if (!vmcoreinfo_size)
    1900           1 :                 return;
    1901           1 :         buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
    1902             :                               vmcoreinfo_size);
    1903             :         final_note(buf);
    1904             : }
    1905             : 
    1906           0 : void crash_save_vmcoreinfo(void)
    1907             : {
    1908           0 :         vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
    1909           0 :         update_vmcoreinfo_note();
    1910           0 : }
    1911             : 
    1912          53 : void vmcoreinfo_append_str(const char *fmt, ...)
    1913             : {
    1914             :         va_list args;
    1915             :         char buf[0x50];
    1916             :         size_t r;
    1917             : 
    1918          53 :         va_start(args, fmt);
    1919          53 :         r = vscnprintf(buf, sizeof(buf), fmt, args);
    1920          53 :         va_end(args);
    1921             : 
    1922          53 :         r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
    1923             : 
    1924          53 :         memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
    1925             : 
    1926          53 :         vmcoreinfo_size += r;
    1927          53 : }
    1928             : 
    1929             : /*
    1930             :  * provide an empty default implementation here -- architecture
    1931             :  * code may override this
    1932             :  */
    1933           0 : void __weak arch_crash_save_vmcoreinfo(void)
    1934           0 : {}
    1935             : 
    1936           0 : unsigned long __weak paddr_vmcoreinfo_note(void)
    1937             : {
    1938           0 :         return __pa((unsigned long)(char *)&vmcoreinfo_note);
    1939             : }
    1940             : 
    1941           1 : static int __init crash_save_vmcoreinfo_init(void)
    1942             : {
    1943           1 :         VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
    1944           1 :         VMCOREINFO_PAGESIZE(PAGE_SIZE);
    1945             : 
    1946           1 :         VMCOREINFO_SYMBOL(init_uts_ns);
    1947           1 :         VMCOREINFO_SYMBOL(node_online_map);
    1948             : #ifdef CONFIG_MMU
    1949           1 :         VMCOREINFO_SYMBOL(swapper_pg_dir);
    1950             : #endif
    1951           1 :         VMCOREINFO_SYMBOL(_stext);
    1952           1 :         VMCOREINFO_SYMBOL(vmap_area_list);
    1953             : 
    1954             : #ifndef CONFIG_NEED_MULTIPLE_NODES
    1955           1 :         VMCOREINFO_SYMBOL(mem_map);
    1956           1 :         VMCOREINFO_SYMBOL(contig_page_data);
    1957             : #endif
    1958             : #ifdef CONFIG_SPARSEMEM
    1959             :         VMCOREINFO_SYMBOL(mem_section);
    1960             :         VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
    1961             :         VMCOREINFO_STRUCT_SIZE(mem_section);
    1962             :         VMCOREINFO_OFFSET(mem_section, section_mem_map);
    1963             : #endif
    1964           1 :         VMCOREINFO_STRUCT_SIZE(page);
    1965           1 :         VMCOREINFO_STRUCT_SIZE(pglist_data);
    1966           1 :         VMCOREINFO_STRUCT_SIZE(zone);
    1967           1 :         VMCOREINFO_STRUCT_SIZE(free_area);
    1968           1 :         VMCOREINFO_STRUCT_SIZE(list_head);
    1969           1 :         VMCOREINFO_SIZE(nodemask_t);
    1970           1 :         VMCOREINFO_OFFSET(page, flags);
    1971           1 :         VMCOREINFO_OFFSET(page, _count);
    1972           1 :         VMCOREINFO_OFFSET(page, mapping);
    1973           1 :         VMCOREINFO_OFFSET(page, lru);
    1974           1 :         VMCOREINFO_OFFSET(page, _mapcount);
    1975           1 :         VMCOREINFO_OFFSET(page, private);
    1976           1 :         VMCOREINFO_OFFSET(pglist_data, node_zones);
    1977           1 :         VMCOREINFO_OFFSET(pglist_data, nr_zones);
    1978             : #ifdef CONFIG_FLAT_NODE_MEM_MAP
    1979           1 :         VMCOREINFO_OFFSET(pglist_data, node_mem_map);
    1980             : #endif
    1981           1 :         VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
    1982           1 :         VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
    1983           1 :         VMCOREINFO_OFFSET(pglist_data, node_id);
    1984           1 :         VMCOREINFO_OFFSET(zone, free_area);
    1985           1 :         VMCOREINFO_OFFSET(zone, vm_stat);
    1986           1 :         VMCOREINFO_OFFSET(zone, spanned_pages);
    1987           1 :         VMCOREINFO_OFFSET(free_area, free_list);
    1988           1 :         VMCOREINFO_OFFSET(list_head, next);
    1989           1 :         VMCOREINFO_OFFSET(list_head, prev);
    1990           1 :         VMCOREINFO_OFFSET(vmap_area, va_start);
    1991           1 :         VMCOREINFO_OFFSET(vmap_area, list);
    1992           1 :         VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
    1993           1 :         log_buf_kexec_setup();
    1994           1 :         VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
    1995           1 :         VMCOREINFO_NUMBER(NR_FREE_PAGES);
    1996           1 :         VMCOREINFO_NUMBER(PG_lru);
    1997           1 :         VMCOREINFO_NUMBER(PG_private);
    1998           1 :         VMCOREINFO_NUMBER(PG_swapcache);
    1999           1 :         VMCOREINFO_NUMBER(PG_slab);
    2000             : #ifdef CONFIG_MEMORY_FAILURE
    2001             :         VMCOREINFO_NUMBER(PG_hwpoison);
    2002             : #endif
    2003           1 :         VMCOREINFO_NUMBER(PG_head_mask);
    2004           1 :         VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
    2005             : #ifdef CONFIG_HUGETLBFS
    2006             :         VMCOREINFO_SYMBOL(free_huge_page);
    2007             : #endif
    2008             : 
    2009           1 :         arch_crash_save_vmcoreinfo();
    2010           1 :         update_vmcoreinfo_note();
    2011             : 
    2012           1 :         return 0;
    2013             : }
    2014             : 
    2015             : subsys_initcall(crash_save_vmcoreinfo_init);
    2016             : 
    2017             : #ifdef CONFIG_KEXEC_FILE
    2018             : static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
    2019             :                                     struct kexec_buf *kbuf)
    2020             : {
    2021             :         struct kimage *image = kbuf->image;
    2022             :         unsigned long temp_start, temp_end;
    2023             : 
    2024             :         temp_end = min(end, kbuf->buf_max);
    2025             :         temp_start = temp_end - kbuf->memsz;
    2026             : 
    2027             :         do {
    2028             :                 /* align down start */
    2029             :                 temp_start = temp_start & (~(kbuf->buf_align - 1));
    2030             : 
    2031             :                 if (temp_start < start || temp_start < kbuf->buf_min)
    2032             :                         return 0;
    2033             : 
    2034             :                 temp_end = temp_start + kbuf->memsz - 1;
    2035             : 
    2036             :                 /*
    2037             :                  * Make sure this does not conflict with any of existing
    2038             :                  * segments
    2039             :                  */
    2040             :                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
    2041             :                         temp_start = temp_start - PAGE_SIZE;
    2042             :                         continue;
    2043             :                 }
    2044             : 
    2045             :                 /* We found a suitable memory range */
    2046             :                 break;
    2047             :         } while (1);
    2048             : 
    2049             :         /* If we are here, we found a suitable memory range */
    2050             :         kbuf->mem = temp_start;
    2051             : 
    2052             :         /* Success, stop navigating through remaining System RAM ranges */
    2053             :         return 1;
    2054             : }
    2055             : 
    2056             : static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
    2057             :                                      struct kexec_buf *kbuf)
    2058             : {
    2059             :         struct kimage *image = kbuf->image;
    2060             :         unsigned long temp_start, temp_end;
    2061             : 
    2062             :         temp_start = max(start, kbuf->buf_min);
    2063             : 
    2064             :         do {
    2065             :                 temp_start = ALIGN(temp_start, kbuf->buf_align);
    2066             :                 temp_end = temp_start + kbuf->memsz - 1;
    2067             : 
    2068             :                 if (temp_end > end || temp_end > kbuf->buf_max)
    2069             :                         return 0;
    2070             :                 /*
    2071             :                  * Make sure this does not conflict with any of existing
    2072             :                  * segments
    2073             :                  */
    2074             :                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
    2075             :                         temp_start = temp_start + PAGE_SIZE;
    2076             :                         continue;
    2077             :                 }
    2078             : 
    2079             :                 /* We found a suitable memory range */
    2080             :                 break;
    2081             :         } while (1);
    2082             : 
    2083             :         /* If we are here, we found a suitable memory range */
    2084             :         kbuf->mem = temp_start;
    2085             : 
    2086             :         /* Success, stop navigating through remaining System RAM ranges */
    2087             :         return 1;
    2088             : }
    2089             : 
    2090             : static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
    2091             : {
    2092             :         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
    2093             :         unsigned long sz = end - start + 1;
    2094             : 
    2095             :         /* Returning 0 will take to next memory range */
    2096             :         if (sz < kbuf->memsz)
    2097             :                 return 0;
    2098             : 
    2099             :         if (end < kbuf->buf_min || start > kbuf->buf_max)
    2100             :                 return 0;
    2101             : 
    2102             :         /*
    2103             :          * Allocate memory top down with-in ram range. Otherwise bottom up
    2104             :          * allocation.
    2105             :          */
    2106             :         if (kbuf->top_down)
    2107             :                 return locate_mem_hole_top_down(start, end, kbuf);
    2108             :         return locate_mem_hole_bottom_up(start, end, kbuf);
    2109             : }
    2110             : 
    2111             : /*
    2112             :  * Helper function for placing a buffer in a kexec segment. This assumes
    2113             :  * that kexec_mutex is held.
    2114             :  */
    2115             : int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
    2116             :                      unsigned long memsz, unsigned long buf_align,
    2117             :                      unsigned long buf_min, unsigned long buf_max,
    2118             :                      bool top_down, unsigned long *load_addr)
    2119             : {
    2120             : 
    2121             :         struct kexec_segment *ksegment;
    2122             :         struct kexec_buf buf, *kbuf;
    2123             :         int ret;
    2124             : 
    2125             :         /* Currently adding segment this way is allowed only in file mode */
    2126             :         if (!image->file_mode)
    2127             :                 return -EINVAL;
    2128             : 
    2129             :         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
    2130             :                 return -EINVAL;
    2131             : 
    2132             :         /*
    2133             :          * Make sure we are not trying to add buffer after allocating
    2134             :          * control pages. All segments need to be placed first before
    2135             :          * any control pages are allocated. As control page allocation
    2136             :          * logic goes through list of segments to make sure there are
    2137             :          * no destination overlaps.
    2138             :          */
    2139             :         if (!list_empty(&image->control_pages)) {
    2140             :                 WARN_ON(1);
    2141             :                 return -EINVAL;
    2142             :         }
    2143             : 
    2144             :         memset(&buf, 0, sizeof(struct kexec_buf));
    2145             :         kbuf = &buf;
    2146             :         kbuf->image = image;
    2147             :         kbuf->buffer = buffer;
    2148             :         kbuf->bufsz = bufsz;
    2149             : 
    2150             :         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
    2151             :         kbuf->buf_align = max(buf_align, PAGE_SIZE);
    2152             :         kbuf->buf_min = buf_min;
    2153             :         kbuf->buf_max = buf_max;
    2154             :         kbuf->top_down = top_down;
    2155             : 
    2156             :         /* Walk the RAM ranges and allocate a suitable range for the buffer */
    2157             :         if (image->type == KEXEC_TYPE_CRASH)
    2158             :                 ret = walk_iomem_res("Crash kernel",
    2159             :                                      IORESOURCE_MEM | IORESOURCE_BUSY,
    2160             :                                      crashk_res.start, crashk_res.end, kbuf,
    2161             :                                      locate_mem_hole_callback);
    2162             :         else
    2163             :                 ret = walk_system_ram_res(0, -1, kbuf,
    2164             :                                           locate_mem_hole_callback);
    2165             :         if (ret != 1) {
    2166             :                 /* A suitable memory range could not be found for buffer */
    2167             :                 return -EADDRNOTAVAIL;
    2168             :         }
    2169             : 
    2170             :         /* Found a suitable memory range */
    2171             :         ksegment = &image->segment[image->nr_segments];
    2172             :         ksegment->kbuf = kbuf->buffer;
    2173             :         ksegment->bufsz = kbuf->bufsz;
    2174             :         ksegment->mem = kbuf->mem;
    2175             :         ksegment->memsz = kbuf->memsz;
    2176             :         image->nr_segments++;
    2177             :         *load_addr = ksegment->mem;
    2178             :         return 0;
    2179             : }
    2180             : 
    2181             : /* Calculate and store the digest of segments */
    2182             : static int kexec_calculate_store_digests(struct kimage *image)
    2183             : {
    2184             :         struct crypto_shash *tfm;
    2185             :         struct shash_desc *desc;
    2186             :         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
    2187             :         size_t desc_size, nullsz;
    2188             :         char *digest;
    2189             :         void *zero_buf;
    2190             :         struct kexec_sha_region *sha_regions;
    2191             :         struct purgatory_info *pi = &image->purgatory_info;
    2192             : 
    2193             :         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
    2194             :         zero_buf_sz = PAGE_SIZE;
    2195             : 
    2196             :         tfm = crypto_alloc_shash("sha256", 0, 0);
    2197             :         if (IS_ERR(tfm)) {
    2198             :                 ret = PTR_ERR(tfm);
    2199             :                 goto out;
    2200             :         }
    2201             : 
    2202             :         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
    2203             :         desc = kzalloc(desc_size, GFP_KERNEL);
    2204             :         if (!desc) {
    2205             :                 ret = -ENOMEM;
    2206             :                 goto out_free_tfm;
    2207             :         }
    2208             : 
    2209             :         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
    2210             :         sha_regions = vzalloc(sha_region_sz);
    2211             :         if (!sha_regions)
    2212             :                 goto out_free_desc;
    2213             : 
    2214             :         desc->tfm   = tfm;
    2215             :         desc->flags = 0;
    2216             : 
    2217             :         ret = crypto_shash_init(desc);
    2218             :         if (ret < 0)
    2219             :                 goto out_free_sha_regions;
    2220             : 
    2221             :         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
    2222             :         if (!digest) {
    2223             :                 ret = -ENOMEM;
    2224             :                 goto out_free_sha_regions;
    2225             :         }
    2226             : 
    2227             :         for (j = i = 0; i < image->nr_segments; i++) {
    2228             :                 struct kexec_segment *ksegment;
    2229             : 
    2230             :                 ksegment = &image->segment[i];
    2231             :                 /*
    2232             :                  * Skip purgatory as it will be modified once we put digest
    2233             :                  * info in purgatory.
    2234             :                  */
    2235             :                 if (ksegment->kbuf == pi->purgatory_buf)
    2236             :                         continue;
    2237             : 
    2238             :                 ret = crypto_shash_update(desc, ksegment->kbuf,
    2239             :                                           ksegment->bufsz);
    2240             :                 if (ret)
    2241             :                         break;
    2242             : 
    2243             :                 /*
    2244             :                  * Assume rest of the buffer is filled with zero and
    2245             :                  * update digest accordingly.
    2246             :                  */
    2247             :                 nullsz = ksegment->memsz - ksegment->bufsz;
    2248             :                 while (nullsz) {
    2249             :                         unsigned long bytes = nullsz;
    2250             : 
    2251             :                         if (bytes > zero_buf_sz)
    2252             :                                 bytes = zero_buf_sz;
    2253             :                         ret = crypto_shash_update(desc, zero_buf, bytes);
    2254             :                         if (ret)
    2255             :                                 break;
    2256             :                         nullsz -= bytes;
    2257             :                 }
    2258             : 
    2259             :                 if (ret)
    2260             :                         break;
    2261             : 
    2262             :                 sha_regions[j].start = ksegment->mem;
    2263             :                 sha_regions[j].len = ksegment->memsz;
    2264             :                 j++;
    2265             :         }
    2266             : 
    2267             :         if (!ret) {
    2268             :                 ret = crypto_shash_final(desc, digest);
    2269             :                 if (ret)
    2270             :                         goto out_free_digest;
    2271             :                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
    2272             :                                                 sha_regions, sha_region_sz, 0);
    2273             :                 if (ret)
    2274             :                         goto out_free_digest;
    2275             : 
    2276             :                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
    2277             :                                                 digest, SHA256_DIGEST_SIZE, 0);
    2278             :                 if (ret)
    2279             :                         goto out_free_digest;
    2280             :         }
    2281             : 
    2282             : out_free_digest:
    2283             :         kfree(digest);
    2284             : out_free_sha_regions:
    2285             :         vfree(sha_regions);
    2286             : out_free_desc:
    2287             :         kfree(desc);
    2288             : out_free_tfm:
    2289             :         kfree(tfm);
    2290             : out:
    2291             :         return ret;
    2292             : }
    2293             : 
    2294             : /* Actually load purgatory. Lot of code taken from kexec-tools */
    2295             : static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
    2296             :                                   unsigned long max, int top_down)
    2297             : {
    2298             :         struct purgatory_info *pi = &image->purgatory_info;
    2299             :         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
    2300             :         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
    2301             :         unsigned char *buf_addr, *src;
    2302             :         int i, ret = 0, entry_sidx = -1;
    2303             :         const Elf_Shdr *sechdrs_c;
    2304             :         Elf_Shdr *sechdrs = NULL;
    2305             :         void *purgatory_buf = NULL;
    2306             : 
    2307             :         /*
    2308             :          * sechdrs_c points to section headers in purgatory and are read
    2309             :          * only. No modifications allowed.
    2310             :          */
    2311             :         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
    2312             : 
    2313             :         /*
    2314             :          * We can not modify sechdrs_c[] and its fields. It is read only.
    2315             :          * Copy it over to a local copy where one can store some temporary
    2316             :          * data and free it at the end. We need to modify ->sh_addr and
    2317             :          * ->sh_offset fields to keep track of permanent and temporary
    2318             :          * locations of sections.
    2319             :          */
    2320             :         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
    2321             :         if (!sechdrs)
    2322             :                 return -ENOMEM;
    2323             : 
    2324             :         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
    2325             : 
    2326             :         /*
    2327             :          * We seem to have multiple copies of sections. First copy is which
    2328             :          * is embedded in kernel in read only section. Some of these sections
    2329             :          * will be copied to a temporary buffer and relocated. And these
    2330             :          * sections will finally be copied to their final destination at
    2331             :          * segment load time.
    2332             :          *
    2333             :          * Use ->sh_offset to reflect section address in memory. It will
    2334             :          * point to original read only copy if section is not allocatable.
    2335             :          * Otherwise it will point to temporary copy which will be relocated.
    2336             :          *
    2337             :          * Use ->sh_addr to contain final address of the section where it
    2338             :          * will go during execution time.
    2339             :          */
    2340             :         for (i = 0; i < pi->ehdr->e_shnum; i++) {
    2341             :                 if (sechdrs[i].sh_type == SHT_NOBITS)
    2342             :                         continue;
    2343             : 
    2344             :                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
    2345             :                                                 sechdrs[i].sh_offset;
    2346             :         }
    2347             : 
    2348             :         /*
    2349             :          * Identify entry point section and make entry relative to section
    2350             :          * start.
    2351             :          */
    2352             :         entry = pi->ehdr->e_entry;
    2353             :         for (i = 0; i < pi->ehdr->e_shnum; i++) {
    2354             :                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
    2355             :                         continue;
    2356             : 
    2357             :                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
    2358             :                         continue;
    2359             : 
    2360             :                 /* Make entry section relative */
    2361             :                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
    2362             :                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
    2363             :                      pi->ehdr->e_entry)) {
    2364             :                         entry_sidx = i;
    2365             :                         entry -= sechdrs[i].sh_addr;
    2366             :                         break;
    2367             :                 }
    2368             :         }
    2369             : 
    2370             :         /* Determine how much memory is needed to load relocatable object. */
    2371             :         buf_align = 1;
    2372             :         bss_align = 1;
    2373             :         buf_sz = 0;
    2374             :         bss_sz = 0;
    2375             : 
    2376             :         for (i = 0; i < pi->ehdr->e_shnum; i++) {
    2377             :                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
    2378             :                         continue;
    2379             : 
    2380             :                 align = sechdrs[i].sh_addralign;
    2381             :                 if (sechdrs[i].sh_type != SHT_NOBITS) {
    2382             :                         if (buf_align < align)
    2383             :                                 buf_align = align;
    2384             :                         buf_sz = ALIGN(buf_sz, align);
    2385             :                         buf_sz += sechdrs[i].sh_size;
    2386             :                 } else {
    2387             :                         /* bss section */
    2388             :                         if (bss_align < align)
    2389             :                                 bss_align = align;
    2390             :                         bss_sz = ALIGN(bss_sz, align);
    2391             :                         bss_sz += sechdrs[i].sh_size;
    2392             :                 }
    2393             :         }
    2394             : 
    2395             :         /* Determine the bss padding required to align bss properly */
    2396             :         bss_pad = 0;
    2397             :         if (buf_sz & (bss_align - 1))
    2398             :                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
    2399             : 
    2400             :         memsz = buf_sz + bss_pad + bss_sz;
    2401             : 
    2402             :         /* Allocate buffer for purgatory */
    2403             :         purgatory_buf = vzalloc(buf_sz);
    2404             :         if (!purgatory_buf) {
    2405             :                 ret = -ENOMEM;
    2406             :                 goto out;
    2407             :         }
    2408             : 
    2409             :         if (buf_align < bss_align)
    2410             :                 buf_align = bss_align;
    2411             : 
    2412             :         /* Add buffer to segment list */
    2413             :         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
    2414             :                                 buf_align, min, max, top_down,
    2415             :                                 &pi->purgatory_load_addr);
    2416             :         if (ret)
    2417             :                 goto out;
    2418             : 
    2419             :         /* Load SHF_ALLOC sections */
    2420             :         buf_addr = purgatory_buf;
    2421             :         load_addr = curr_load_addr = pi->purgatory_load_addr;
    2422             :         bss_addr = load_addr + buf_sz + bss_pad;
    2423             : 
    2424             :         for (i = 0; i < pi->ehdr->e_shnum; i++) {
    2425             :                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
    2426             :                         continue;
    2427             : 
    2428             :                 align = sechdrs[i].sh_addralign;
    2429             :                 if (sechdrs[i].sh_type != SHT_NOBITS) {
    2430             :                         curr_load_addr = ALIGN(curr_load_addr, align);
    2431             :                         offset = curr_load_addr - load_addr;
    2432             :                         /* We already modifed ->sh_offset to keep src addr */
    2433             :                         src = (char *) sechdrs[i].sh_offset;
    2434             :                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
    2435             : 
    2436             :                         /* Store load address and source address of section */
    2437             :                         sechdrs[i].sh_addr = curr_load_addr;
    2438             : 
    2439             :                         /*
    2440             :                          * This section got copied to temporary buffer. Update
    2441             :                          * ->sh_offset accordingly.
    2442             :                          */
    2443             :                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
    2444             : 
    2445             :                         /* Advance to the next address */
    2446             :                         curr_load_addr += sechdrs[i].sh_size;
    2447             :                 } else {
    2448             :                         bss_addr = ALIGN(bss_addr, align);
    2449             :                         sechdrs[i].sh_addr = bss_addr;
    2450             :                         bss_addr += sechdrs[i].sh_size;
    2451             :                 }
    2452             :         }
    2453             : 
    2454             :         /* Update entry point based on load address of text section */
    2455             :         if (entry_sidx >= 0)
    2456             :                 entry += sechdrs[entry_sidx].sh_addr;
    2457             : 
    2458             :         /* Make kernel jump to purgatory after shutdown */
    2459             :         image->start = entry;
    2460             : 
    2461             :         /* Used later to get/set symbol values */
    2462             :         pi->sechdrs = sechdrs;
    2463             : 
    2464             :         /*
    2465             :          * Used later to identify which section is purgatory and skip it
    2466             :          * from checksumming.
    2467             :          */
    2468             :         pi->purgatory_buf = purgatory_buf;
    2469             :         return ret;
    2470             : out:
    2471             :         vfree(sechdrs);
    2472             :         vfree(purgatory_buf);
    2473             :         return ret;
    2474             : }
    2475             : 
    2476             : static int kexec_apply_relocations(struct kimage *image)
    2477             : {
    2478             :         int i, ret;
    2479             :         struct purgatory_info *pi = &image->purgatory_info;
    2480             :         Elf_Shdr *sechdrs = pi->sechdrs;
    2481             : 
    2482             :         /* Apply relocations */
    2483             :         for (i = 0; i < pi->ehdr->e_shnum; i++) {
    2484             :                 Elf_Shdr *section, *symtab;
    2485             : 
    2486             :                 if (sechdrs[i].sh_type != SHT_RELA &&
    2487             :                     sechdrs[i].sh_type != SHT_REL)
    2488             :                         continue;
    2489             : 
    2490             :                 /*
    2491             :                  * For section of type SHT_RELA/SHT_REL,
    2492             :                  * ->sh_link contains section header index of associated
    2493             :                  * symbol table. And ->sh_info contains section header
    2494             :                  * index of section to which relocations apply.
    2495             :                  */
    2496             :                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
    2497             :                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
    2498             :                         return -ENOEXEC;
    2499             : 
    2500             :                 section = &sechdrs[sechdrs[i].sh_info];
    2501             :                 symtab = &sechdrs[sechdrs[i].sh_link];
    2502             : 
    2503             :                 if (!(section->sh_flags & SHF_ALLOC))
    2504             :                         continue;
    2505             : 
    2506             :                 /*
    2507             :                  * symtab->sh_link contain section header index of associated
    2508             :                  * string table.
    2509             :                  */
    2510             :                 if (symtab->sh_link >= pi->ehdr->e_shnum)
    2511             :                         /* Invalid section number? */
    2512             :                         continue;
    2513             : 
    2514             :                 /*
    2515             :                  * Respective archicture needs to provide support for applying
    2516             :                  * relocations of type SHT_RELA/SHT_REL.
    2517             :                  */
    2518             :                 if (sechdrs[i].sh_type == SHT_RELA)
    2519             :                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
    2520             :                                                                sechdrs, i);
    2521             :                 else if (sechdrs[i].sh_type == SHT_REL)
    2522             :                         ret = arch_kexec_apply_relocations(pi->ehdr,
    2523             :                                                            sechdrs, i);
    2524             :                 if (ret)
    2525             :                         return ret;
    2526             :         }
    2527             : 
    2528             :         return 0;
    2529             : }
    2530             : 
    2531             : /* Load relocatable purgatory object and relocate it appropriately */
    2532             : int kexec_load_purgatory(struct kimage *image, unsigned long min,
    2533             :                          unsigned long max, int top_down,
    2534             :                          unsigned long *load_addr)
    2535             : {
    2536             :         struct purgatory_info *pi = &image->purgatory_info;
    2537             :         int ret;
    2538             : 
    2539             :         if (kexec_purgatory_size <= 0)
    2540             :                 return -EINVAL;
    2541             : 
    2542             :         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
    2543             :                 return -ENOEXEC;
    2544             : 
    2545             :         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
    2546             : 
    2547             :         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
    2548             :             || pi->ehdr->e_type != ET_REL
    2549             :             || !elf_check_arch(pi->ehdr)
    2550             :             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
    2551             :                 return -ENOEXEC;
    2552             : 
    2553             :         if (pi->ehdr->e_shoff >= kexec_purgatory_size
    2554             :             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
    2555             :             kexec_purgatory_size - pi->ehdr->e_shoff))
    2556             :                 return -ENOEXEC;
    2557             : 
    2558             :         ret = __kexec_load_purgatory(image, min, max, top_down);
    2559             :         if (ret)
    2560             :                 return ret;
    2561             : 
    2562             :         ret = kexec_apply_relocations(image);
    2563             :         if (ret)
    2564             :                 goto out;
    2565             : 
    2566             :         *load_addr = pi->purgatory_load_addr;
    2567             :         return 0;
    2568             : out:
    2569             :         vfree(pi->sechdrs);
    2570             :         vfree(pi->purgatory_buf);
    2571             :         return ret;
    2572             : }
    2573             : 
    2574             : static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
    2575             :                                             const char *name)
    2576             : {
    2577             :         Elf_Sym *syms;
    2578             :         Elf_Shdr *sechdrs;
    2579             :         Elf_Ehdr *ehdr;
    2580             :         int i, k;
    2581             :         const char *strtab;
    2582             : 
    2583             :         if (!pi->sechdrs || !pi->ehdr)
    2584             :                 return NULL;
    2585             : 
    2586             :         sechdrs = pi->sechdrs;
    2587             :         ehdr = pi->ehdr;
    2588             : 
    2589             :         for (i = 0; i < ehdr->e_shnum; i++) {
    2590             :                 if (sechdrs[i].sh_type != SHT_SYMTAB)
    2591             :                         continue;
    2592             : 
    2593             :                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
    2594             :                         /* Invalid strtab section number */
    2595             :                         continue;
    2596             :                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
    2597             :                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
    2598             : 
    2599             :                 /* Go through symbols for a match */
    2600             :                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
    2601             :                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
    2602             :                                 continue;
    2603             : 
    2604             :                         if (strcmp(strtab + syms[k].st_name, name) != 0)
    2605             :                                 continue;
    2606             : 
    2607             :                         if (syms[k].st_shndx == SHN_UNDEF ||
    2608             :                             syms[k].st_shndx >= ehdr->e_shnum) {
    2609             :                                 pr_debug("Symbol: %s has bad section index %d.\n",
    2610             :                                                 name, syms[k].st_shndx);
    2611             :                                 return NULL;
    2612             :                         }
    2613             : 
    2614             :                         /* Found the symbol we are looking for */
    2615             :                         return &syms[k];
    2616             :                 }
    2617             :         }
    2618             : 
    2619             :         return NULL;
    2620             : }
    2621             : 
    2622             : void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
    2623             : {
    2624             :         struct purgatory_info *pi = &image->purgatory_info;
    2625             :         Elf_Sym *sym;
    2626             :         Elf_Shdr *sechdr;
    2627             : 
    2628             :         sym = kexec_purgatory_find_symbol(pi, name);
    2629             :         if (!sym)
    2630             :                 return ERR_PTR(-EINVAL);
    2631             : 
    2632             :         sechdr = &pi->sechdrs[sym->st_shndx];
    2633             : 
    2634             :         /*
    2635             :          * Returns the address where symbol will finally be loaded after
    2636             :          * kexec_load_segment()
    2637             :          */
    2638             :         return (void *)(sechdr->sh_addr + sym->st_value);
    2639             : }
    2640             : 
    2641             : /*
    2642             :  * Get or set value of a symbol. If "get_value" is true, symbol value is
    2643             :  * returned in buf otherwise symbol value is set based on value in buf.
    2644             :  */
    2645             : int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
    2646             :                                    void *buf, unsigned int size, bool get_value)
    2647             : {
    2648             :         Elf_Sym *sym;
    2649             :         Elf_Shdr *sechdrs;
    2650             :         struct purgatory_info *pi = &image->purgatory_info;
    2651             :         char *sym_buf;
    2652             : 
    2653             :         sym = kexec_purgatory_find_symbol(pi, name);
    2654             :         if (!sym)
    2655             :                 return -EINVAL;
    2656             : 
    2657             :         if (sym->st_size != size) {
    2658             :                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
    2659             :                        name, (unsigned long)sym->st_size, size);
    2660             :                 return -EINVAL;
    2661             :         }
    2662             : 
    2663             :         sechdrs = pi->sechdrs;
    2664             : 
    2665             :         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
    2666             :                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
    2667             :                        get_value ? "get" : "set");
    2668             :                 return -EINVAL;
    2669             :         }
    2670             : 
    2671             :         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
    2672             :                                         sym->st_value;
    2673             : 
    2674             :         if (get_value)
    2675             :                 memcpy((void *)buf, sym_buf, size);
    2676             :         else
    2677             :                 memcpy((void *)sym_buf, buf, size);
    2678             : 
    2679             :         return 0;
    2680             : }
    2681             : #endif /* CONFIG_KEXEC_FILE */
    2682             : 
    2683             : /*
    2684             :  * Move into place and start executing a preloaded standalone
    2685             :  * executable.  If nothing was preloaded return an error.
    2686             :  */
    2687           0 : int kernel_kexec(void)
    2688             : {
    2689             :         int error = 0;
    2690             : 
    2691           0 :         if (!mutex_trylock(&kexec_mutex))
    2692             :                 return -EBUSY;
    2693           0 :         if (!kexec_image) {
    2694             :                 error = -EINVAL;
    2695             :                 goto Unlock;
    2696             :         }
    2697             : 
    2698             : #ifdef CONFIG_KEXEC_JUMP
    2699             :         if (kexec_image->preserve_context) {
    2700             :                 lock_system_sleep();
    2701             :                 pm_prepare_console();
    2702             :                 error = freeze_processes();
    2703             :                 if (error) {
    2704             :                         error = -EBUSY;
    2705             :                         goto Restore_console;
    2706             :                 }
    2707             :                 suspend_console();
    2708             :                 error = dpm_suspend_start(PMSG_FREEZE);
    2709             :                 if (error)
    2710             :                         goto Resume_console;
    2711             :                 /* At this point, dpm_suspend_start() has been called,
    2712             :                  * but *not* dpm_suspend_end(). We *must* call
    2713             :                  * dpm_suspend_end() now.  Otherwise, drivers for
    2714             :                  * some devices (e.g. interrupt controllers) become
    2715             :                  * desynchronized with the actual state of the
    2716             :                  * hardware at resume time, and evil weirdness ensues.
    2717             :                  */
    2718             :                 error = dpm_suspend_end(PMSG_FREEZE);
    2719             :                 if (error)
    2720             :                         goto Resume_devices;
    2721             :                 error = disable_nonboot_cpus();
    2722             :                 if (error)
    2723             :                         goto Enable_cpus;
    2724             :                 local_irq_disable();
    2725             :                 error = syscore_suspend();
    2726             :                 if (error)
    2727             :                         goto Enable_irqs;
    2728             :         } else
    2729             : #endif
    2730             :         {
    2731           0 :                 kexec_in_progress = true;
    2732           0 :                 kernel_restart_prepare(NULL);
    2733           0 :                 migrate_to_reboot_cpu();
    2734             : 
    2735             :                 /*
    2736             :                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
    2737             :                  * no further code needs to use CPU hotplug (which is true in
    2738             :                  * the reboot case). However, the kexec path depends on using
    2739             :                  * CPU hotplug again; so re-enable it here.
    2740             :                  */
    2741             :                 cpu_hotplug_enable();
    2742           0 :                 pr_emerg("Starting new kernel\n");
    2743           0 :                 machine_shutdown();
    2744             :         }
    2745             : 
    2746           0 :         machine_kexec(kexec_image);
    2747             : 
    2748             : #ifdef CONFIG_KEXEC_JUMP
    2749             :         if (kexec_image->preserve_context) {
    2750             :                 syscore_resume();
    2751             :  Enable_irqs:
    2752             :                 local_irq_enable();
    2753             :  Enable_cpus:
    2754             :                 enable_nonboot_cpus();
    2755             :                 dpm_resume_start(PMSG_RESTORE);
    2756             :  Resume_devices:
    2757             :                 dpm_resume_end(PMSG_RESTORE);
    2758             :  Resume_console:
    2759             :                 resume_console();
    2760             :                 thaw_processes();
    2761             :  Restore_console:
    2762             :                 pm_restore_console();
    2763             :                 unlock_system_sleep();
    2764             :         }
    2765             : #endif
    2766             : 
    2767             :  Unlock:
    2768           0 :         mutex_unlock(&kexec_mutex);
    2769           0 :         return error;
    2770             : }

Generated by: LCOV version 1.11