LCOV - code coverage report
Current view: top level - kernel - futex.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 171 631 27.1 %
Date: 2015-04-12 14:34:49 Functions: 19 43 44.2 %

          Line data    Source code
       1             : /*
       2             :  *  Fast Userspace Mutexes (which I call "Futexes!").
       3             :  *  (C) Rusty Russell, IBM 2002
       4             :  *
       5             :  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
       6             :  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
       7             :  *
       8             :  *  Removed page pinning, fix privately mapped COW pages and other cleanups
       9             :  *  (C) Copyright 2003, 2004 Jamie Lokier
      10             :  *
      11             :  *  Robust futex support started by Ingo Molnar
      12             :  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
      13             :  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
      14             :  *
      15             :  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
      16             :  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
      17             :  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
      18             :  *
      19             :  *  PRIVATE futexes by Eric Dumazet
      20             :  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
      21             :  *
      22             :  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
      23             :  *  Copyright (C) IBM Corporation, 2009
      24             :  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
      25             :  *
      26             :  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
      27             :  *  enough at me, Linus for the original (flawed) idea, Matthew
      28             :  *  Kirkwood for proof-of-concept implementation.
      29             :  *
      30             :  *  "The futexes are also cursed."
      31             :  *  "But they come in a choice of three flavours!"
      32             :  *
      33             :  *  This program is free software; you can redistribute it and/or modify
      34             :  *  it under the terms of the GNU General Public License as published by
      35             :  *  the Free Software Foundation; either version 2 of the License, or
      36             :  *  (at your option) any later version.
      37             :  *
      38             :  *  This program is distributed in the hope that it will be useful,
      39             :  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
      40             :  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      41             :  *  GNU General Public License for more details.
      42             :  *
      43             :  *  You should have received a copy of the GNU General Public License
      44             :  *  along with this program; if not, write to the Free Software
      45             :  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
      46             :  */
      47             : #include <linux/slab.h>
      48             : #include <linux/poll.h>
      49             : #include <linux/fs.h>
      50             : #include <linux/file.h>
      51             : #include <linux/jhash.h>
      52             : #include <linux/init.h>
      53             : #include <linux/futex.h>
      54             : #include <linux/mount.h>
      55             : #include <linux/pagemap.h>
      56             : #include <linux/syscalls.h>
      57             : #include <linux/signal.h>
      58             : #include <linux/export.h>
      59             : #include <linux/magic.h>
      60             : #include <linux/pid.h>
      61             : #include <linux/nsproxy.h>
      62             : #include <linux/ptrace.h>
      63             : #include <linux/sched/rt.h>
      64             : #include <linux/hugetlb.h>
      65             : #include <linux/freezer.h>
      66             : #include <linux/bootmem.h>
      67             : 
      68             : #include <asm/futex.h>
      69             : 
      70             : #include "locking/rtmutex_common.h"
      71             : 
      72             : /*
      73             :  * READ this before attempting to hack on futexes!
      74             :  *
      75             :  * Basic futex operation and ordering guarantees
      76             :  * =============================================
      77             :  *
      78             :  * The waiter reads the futex value in user space and calls
      79             :  * futex_wait(). This function computes the hash bucket and acquires
      80             :  * the hash bucket lock. After that it reads the futex user space value
      81             :  * again and verifies that the data has not changed. If it has not changed
      82             :  * it enqueues itself into the hash bucket, releases the hash bucket lock
      83             :  * and schedules.
      84             :  *
      85             :  * The waker side modifies the user space value of the futex and calls
      86             :  * futex_wake(). This function computes the hash bucket and acquires the
      87             :  * hash bucket lock. Then it looks for waiters on that futex in the hash
      88             :  * bucket and wakes them.
      89             :  *
      90             :  * In futex wake up scenarios where no tasks are blocked on a futex, taking
      91             :  * the hb spinlock can be avoided and simply return. In order for this
      92             :  * optimization to work, ordering guarantees must exist so that the waiter
      93             :  * being added to the list is acknowledged when the list is concurrently being
      94             :  * checked by the waker, avoiding scenarios like the following:
      95             :  *
      96             :  * CPU 0                               CPU 1
      97             :  * val = *futex;
      98             :  * sys_futex(WAIT, futex, val);
      99             :  *   futex_wait(futex, val);
     100             :  *   uval = *futex;
     101             :  *                                     *futex = newval;
     102             :  *                                     sys_futex(WAKE, futex);
     103             :  *                                       futex_wake(futex);
     104             :  *                                       if (queue_empty())
     105             :  *                                         return;
     106             :  *   if (uval == val)
     107             :  *      lock(hash_bucket(futex));
     108             :  *      queue();
     109             :  *     unlock(hash_bucket(futex));
     110             :  *     schedule();
     111             :  *
     112             :  * This would cause the waiter on CPU 0 to wait forever because it
     113             :  * missed the transition of the user space value from val to newval
     114             :  * and the waker did not find the waiter in the hash bucket queue.
     115             :  *
     116             :  * The correct serialization ensures that a waiter either observes
     117             :  * the changed user space value before blocking or is woken by a
     118             :  * concurrent waker:
     119             :  *
     120             :  * CPU 0                                 CPU 1
     121             :  * val = *futex;
     122             :  * sys_futex(WAIT, futex, val);
     123             :  *   futex_wait(futex, val);
     124             :  *
     125             :  *   waiters++; (a)
     126             :  *   mb(); (A) <-- paired with -.
     127             :  *                              |
     128             :  *   lock(hash_bucket(futex));  |
     129             :  *                              |
     130             :  *   uval = *futex;             |
     131             :  *                              |        *futex = newval;
     132             :  *                              |        sys_futex(WAKE, futex);
     133             :  *                              |          futex_wake(futex);
     134             :  *                              |
     135             :  *                              `------->  mb(); (B)
     136             :  *   if (uval == val)
     137             :  *     queue();
     138             :  *     unlock(hash_bucket(futex));
     139             :  *     schedule();                         if (waiters)
     140             :  *                                           lock(hash_bucket(futex));
     141             :  *   else                                    wake_waiters(futex);
     142             :  *     waiters--; (b)                        unlock(hash_bucket(futex));
     143             :  *
     144             :  * Where (A) orders the waiters increment and the futex value read through
     145             :  * atomic operations (see hb_waiters_inc) and where (B) orders the write
     146             :  * to futex and the waiters read -- this is done by the barriers for both
     147             :  * shared and private futexes in get_futex_key_refs().
     148             :  *
     149             :  * This yields the following case (where X:=waiters, Y:=futex):
     150             :  *
     151             :  *      X = Y = 0
     152             :  *
     153             :  *      w[X]=1          w[Y]=1
     154             :  *      MB              MB
     155             :  *      r[Y]=y          r[X]=x
     156             :  *
     157             :  * Which guarantees that x==0 && y==0 is impossible; which translates back into
     158             :  * the guarantee that we cannot both miss the futex variable change and the
     159             :  * enqueue.
     160             :  *
     161             :  * Note that a new waiter is accounted for in (a) even when it is possible that
     162             :  * the wait call can return error, in which case we backtrack from it in (b).
     163             :  * Refer to the comment in queue_lock().
     164             :  *
     165             :  * Similarly, in order to account for waiters being requeued on another
     166             :  * address we always increment the waiters for the destination bucket before
     167             :  * acquiring the lock. It then decrements them again  after releasing it -
     168             :  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
     169             :  * will do the additional required waiter count housekeeping. This is done for
     170             :  * double_lock_hb() and double_unlock_hb(), respectively.
     171             :  */
     172             : 
     173             : #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
     174             : int __read_mostly futex_cmpxchg_enabled;
     175             : #endif
     176             : 
     177             : /*
     178             :  * Futex flags used to encode options to functions and preserve them across
     179             :  * restarts.
     180             :  */
     181             : #define FLAGS_SHARED            0x01
     182             : #define FLAGS_CLOCKRT           0x02
     183             : #define FLAGS_HAS_TIMEOUT       0x04
     184             : 
     185             : /*
     186             :  * Priority Inheritance state:
     187             :  */
     188             : struct futex_pi_state {
     189             :         /*
     190             :          * list of 'owned' pi_state instances - these have to be
     191             :          * cleaned up in do_exit() if the task exits prematurely:
     192             :          */
     193             :         struct list_head list;
     194             : 
     195             :         /*
     196             :          * The PI object:
     197             :          */
     198             :         struct rt_mutex pi_mutex;
     199             : 
     200             :         struct task_struct *owner;
     201             :         atomic_t refcount;
     202             : 
     203             :         union futex_key key;
     204             : };
     205             : 
     206             : /**
     207             :  * struct futex_q - The hashed futex queue entry, one per waiting task
     208             :  * @list:               priority-sorted list of tasks waiting on this futex
     209             :  * @task:               the task waiting on the futex
     210             :  * @lock_ptr:           the hash bucket lock
     211             :  * @key:                the key the futex is hashed on
     212             :  * @pi_state:           optional priority inheritance state
     213             :  * @rt_waiter:          rt_waiter storage for use with requeue_pi
     214             :  * @requeue_pi_key:     the requeue_pi target futex key
     215             :  * @bitset:             bitset for the optional bitmasked wakeup
     216             :  *
     217             :  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
     218             :  * we can wake only the relevant ones (hashed queues may be shared).
     219             :  *
     220             :  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
     221             :  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
     222             :  * The order of wakeup is always to make the first condition true, then
     223             :  * the second.
     224             :  *
     225             :  * PI futexes are typically woken before they are removed from the hash list via
     226             :  * the rt_mutex code. See unqueue_me_pi().
     227             :  */
     228             : struct futex_q {
     229             :         struct plist_node list;
     230             : 
     231             :         struct task_struct *task;
     232             :         spinlock_t *lock_ptr;
     233             :         union futex_key key;
     234             :         struct futex_pi_state *pi_state;
     235             :         struct rt_mutex_waiter *rt_waiter;
     236             :         union futex_key *requeue_pi_key;
     237             :         u32 bitset;
     238             : };
     239             : 
     240             : static const struct futex_q futex_q_init = {
     241             :         /* list gets initialized in queue_me()*/
     242             :         .key = FUTEX_KEY_INIT,
     243             :         .bitset = FUTEX_BITSET_MATCH_ANY
     244             : };
     245             : 
     246             : /*
     247             :  * Hash buckets are shared by all the futex_keys that hash to the same
     248             :  * location.  Each key may have multiple futex_q structures, one for each task
     249             :  * waiting on a futex.
     250             :  */
     251             : struct futex_hash_bucket {
     252             :         atomic_t waiters;
     253             :         spinlock_t lock;
     254             :         struct plist_head chain;
     255             : } ____cacheline_aligned_in_smp;
     256             : 
     257             : static unsigned long __read_mostly futex_hashsize;
     258             : 
     259             : static struct futex_hash_bucket *futex_queues;
     260             : 
     261             : static inline void futex_get_mm(union futex_key *key)
     262             : {
     263           0 :         atomic_inc(&key->private.mm->mm_count);
     264             :         /*
     265             :          * Ensure futex_get_mm() implies a full barrier such that
     266             :          * get_futex_key() implies a full barrier. This is relied upon
     267             :          * as full barrier (B), see the ordering comment above.
     268             :          */
     269           0 :         smp_mb__after_atomic();
     270             : }
     271             : 
     272             : /*
     273             :  * Reflects a new waiter being added to the waitqueue.
     274             :  */
     275             : static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
     276             : {
     277             : #ifdef CONFIG_SMP
     278             :         atomic_inc(&hb->waiters);
     279             :         /*
     280             :          * Full barrier (A), see the ordering comment above.
     281             :          */
     282             :         smp_mb__after_atomic();
     283             : #endif
     284             : }
     285             : 
     286             : /*
     287             :  * Reflects a waiter being removed from the waitqueue by wakeup
     288             :  * paths.
     289             :  */
     290             : static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
     291             : {
     292             : #ifdef CONFIG_SMP
     293             :         atomic_dec(&hb->waiters);
     294             : #endif
     295             : }
     296             : 
     297             : static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
     298             : {
     299             : #ifdef CONFIG_SMP
     300             :         return atomic_read(&hb->waiters);
     301             : #else
     302             :         return 1;
     303             : #endif
     304             : }
     305             : 
     306             : /*
     307             :  * We hash on the keys returned from get_futex_key (see below).
     308             :  */
     309     1037619 : static struct futex_hash_bucket *hash_futex(union futex_key *key)
     310             : {
     311     2075238 :         u32 hash = jhash2((u32*)&key->both.word,
     312             :                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
     313     1037619 :                           key->both.offset);
     314     1037619 :         return &futex_queues[hash & (futex_hashsize - 1)];
     315             : }
     316             : 
     317             : /*
     318             :  * Return 1 if two futex_keys are equal, 0 otherwise.
     319             :  */
     320             : static inline int match_futex(union futex_key *key1, union futex_key *key2)
     321             : {
     322           0 :         return (key1 && key2
     323      345260 :                 && key1->both.word == key2->both.word
     324      345257 :                 && key1->both.ptr == key2->both.ptr
     325      690517 :                 && key1->both.offset == key2->both.offset);
     326             : }
     327             : 
     328             : /*
     329             :  * Take a reference to the resource addressed by a key.
     330             :  * Can be called while holding spinlocks.
     331             :  *
     332             :  */
     333     1037619 : static void get_futex_key_refs(union futex_key *key)
     334             : {
     335     1037619 :         if (!key->both.ptr)
     336     1037619 :                 return;
     337             : 
     338     1037619 :         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
     339             :         case FUT_OFF_INODE:
     340           0 :                 ihold(key->shared.inode); /* implies MB (B) */
     341             :                 break;
     342             :         case FUT_OFF_MMSHARED:
     343             :                 futex_get_mm(key); /* implies MB (B) */
     344             :                 break;
     345             :         default:
     346             :                 /*
     347             :                  * Private futexes do not hold reference on an inode or
     348             :                  * mm, therefore the only purpose of calling get_futex_key_refs
     349             :                  * is because we need the barrier for the lockless waiter check.
     350             :                  */
     351     1037619 :                 smp_mb(); /* explicit MB (B) */
     352             :         }
     353             : }
     354             : 
     355             : /*
     356             :  * Drop a reference to the resource addressed by a key.
     357             :  * The hash bucket spinlock must not be held. This is
     358             :  * a no-op for private futexes, see comment in the get
     359             :  * counterpart.
     360             :  */
     361     1037616 : static void drop_futex_key_refs(union futex_key *key)
     362             : {
     363     1037616 :         if (!key->both.ptr) {
     364             :                 /* If we're here then we tried to put a key we failed to get */
     365             :                 WARN_ON_ONCE(1);
     366     1037616 :                 return;
     367             :         }
     368             : 
     369     1037616 :         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
     370             :         case FUT_OFF_INODE:
     371           0 :                 iput(key->shared.inode);
     372             :                 break;
     373             :         case FUT_OFF_MMSHARED:
     374             :                 mmdrop(key->private.mm);
     375             :                 break;
     376             :         }
     377             : }
     378             : 
     379             : /**
     380             :  * get_futex_key() - Get parameters which are the keys for a futex
     381             :  * @uaddr:      virtual address of the futex
     382             :  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
     383             :  * @key:        address where result is stored.
     384             :  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
     385             :  *              VERIFY_WRITE)
     386             :  *
     387             :  * Return: a negative error code or 0
     388             :  *
     389             :  * The key words are stored in *key on success.
     390             :  *
     391             :  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
     392             :  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
     393             :  * We can usually work out the index without swapping in the page.
     394             :  *
     395             :  * lock_page() might sleep, the caller should not hold a spinlock.
     396             :  */
     397             : static int
     398     1037619 : get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
     399             : {
     400     1037619 :         unsigned long address = (unsigned long)uaddr;
     401     1037619 :         struct mm_struct *mm = current->mm;
     402             :         struct page *page, *page_head;
     403             :         int err, ro = 0;
     404             : 
     405             :         /*
     406             :          * The futex address must be "naturally" aligned.
     407             :          */
     408     1037619 :         key->both.offset = address % PAGE_SIZE;
     409     1037619 :         if (unlikely((address % sizeof(u32)) != 0))
     410             :                 return -EINVAL;
     411     1037619 :         address -= key->both.offset;
     412             : 
     413     1037619 :         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
     414             :                 return -EFAULT;
     415             : 
     416             :         /*
     417             :          * PROCESS_PRIVATE futexes are fast.
     418             :          * As the mm cannot disappear under us and the 'key' only needs
     419             :          * virtual address, we dont even have to find the underlying vma.
     420             :          * Note : We do have to check 'uaddr' is a valid user address,
     421             :          *        but access_ok() should be faster than find_vma()
     422             :          */
     423     1037619 :         if (!fshared) {
     424     1037619 :                 key->private.mm = mm;
     425     1037619 :                 key->private.address = address;
     426     1037619 :                 get_futex_key_refs(key);  /* implies MB (B) */
     427     1037619 :                 return 0;
     428             :         }
     429             : 
     430             : again:
     431           0 :         err = get_user_pages_fast(address, 1, 1, &page);
     432             :         /*
     433             :          * If write access is not required (eg. FUTEX_WAIT), try
     434             :          * and get read-only access.
     435             :          */
     436           0 :         if (err == -EFAULT && rw == VERIFY_READ) {
     437           0 :                 err = get_user_pages_fast(address, 1, 0, &page);
     438             :                 ro = 1;
     439             :         }
     440           0 :         if (err < 0)
     441             :                 return err;
     442             :         else
     443             :                 err = 0;
     444             : 
     445             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     446             :         page_head = page;
     447             :         if (unlikely(PageTail(page))) {
     448             :                 put_page(page);
     449             :                 /* serialize against __split_huge_page_splitting() */
     450             :                 local_irq_disable();
     451             :                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
     452             :                         page_head = compound_head(page);
     453             :                         /*
     454             :                          * page_head is valid pointer but we must pin
     455             :                          * it before taking the PG_lock and/or
     456             :                          * PG_compound_lock. The moment we re-enable
     457             :                          * irqs __split_huge_page_splitting() can
     458             :                          * return and the head page can be freed from
     459             :                          * under us. We can't take the PG_lock and/or
     460             :                          * PG_compound_lock on a page that could be
     461             :                          * freed from under us.
     462             :                          */
     463             :                         if (page != page_head) {
     464             :                                 get_page(page_head);
     465             :                                 put_page(page);
     466             :                         }
     467             :                         local_irq_enable();
     468             :                 } else {
     469             :                         local_irq_enable();
     470             :                         goto again;
     471             :                 }
     472             :         }
     473             : #else
     474           0 :         page_head = compound_head(page);
     475           0 :         if (page != page_head) {
     476             :                 get_page(page_head);
     477           0 :                 put_page(page);
     478             :         }
     479             : #endif
     480             : 
     481             :         lock_page(page_head);
     482             : 
     483             :         /*
     484             :          * If page_head->mapping is NULL, then it cannot be a PageAnon
     485             :          * page; but it might be the ZERO_PAGE or in the gate area or
     486             :          * in a special mapping (all cases which we are happy to fail);
     487             :          * or it may have been a good file page when get_user_pages_fast
     488             :          * found it, but truncated or holepunched or subjected to
     489             :          * invalidate_complete_page2 before we got the page lock (also
     490             :          * cases which we are happy to fail).  And we hold a reference,
     491             :          * so refcount care in invalidate_complete_page's remove_mapping
     492             :          * prevents drop_caches from setting mapping to NULL beneath us.
     493             :          *
     494             :          * The case we do have to guard against is when memory pressure made
     495             :          * shmem_writepage move it from filecache to swapcache beneath us:
     496             :          * an unlikely race, but we do need to retry for page_head->mapping.
     497             :          */
     498           0 :         if (!page_head->mapping) {
     499             :                 int shmem_swizzled = PageSwapCache(page_head);
     500           0 :                 unlock_page(page_head);
     501           0 :                 put_page(page_head);
     502           0 :                 if (shmem_swizzled)
     503             :                         goto again;
     504             :                 return -EFAULT;
     505             :         }
     506             : 
     507             :         /*
     508             :          * Private mappings are handled in a simple way.
     509             :          *
     510             :          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
     511             :          * it's a read-only handle, it's expected that futexes attach to
     512             :          * the object not the particular process.
     513             :          */
     514           0 :         if (PageAnon(page_head)) {
     515             :                 /*
     516             :                  * A RO anonymous page will never change and thus doesn't make
     517             :                  * sense for futex operations.
     518             :                  */
     519           0 :                 if (ro) {
     520             :                         err = -EFAULT;
     521             :                         goto out;
     522             :                 }
     523             : 
     524           0 :                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
     525           0 :                 key->private.mm = mm;
     526           0 :                 key->private.address = address;
     527             :         } else {
     528           0 :                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
     529           0 :                 key->shared.inode = page_head->mapping->host;
     530           0 :                 key->shared.pgoff = basepage_index(page);
     531             :         }
     532             : 
     533           0 :         get_futex_key_refs(key); /* implies MB (B) */
     534             : 
     535             : out:
     536           0 :         unlock_page(page_head);
     537           0 :         put_page(page_head);
     538           0 :         return err;
     539             : }
     540             : 
     541             : static inline void put_futex_key(union futex_key *key)
     542             : {
     543      692359 :         drop_futex_key_refs(key);
     544             : }
     545             : 
     546             : /**
     547             :  * fault_in_user_writeable() - Fault in user address and verify RW access
     548             :  * @uaddr:      pointer to faulting user space address
     549             :  *
     550             :  * Slow path to fixup the fault we just took in the atomic write
     551             :  * access to @uaddr.
     552             :  *
     553             :  * We have no generic implementation of a non-destructive write to the
     554             :  * user address. We know that we faulted in the atomic pagefault
     555             :  * disabled section so we can as well avoid the #PF overhead by
     556             :  * calling get_user_pages() right away.
     557             :  */
     558           0 : static int fault_in_user_writeable(u32 __user *uaddr)
     559             : {
     560           0 :         struct mm_struct *mm = current->mm;
     561             :         int ret;
     562             : 
     563           0 :         down_read(&mm->mmap_sem);
     564           0 :         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
     565             :                                FAULT_FLAG_WRITE);
     566           0 :         up_read(&mm->mmap_sem);
     567             : 
     568           0 :         return ret < 0 ? ret : 0;
     569             : }
     570             : 
     571             : /**
     572             :  * futex_top_waiter() - Return the highest priority waiter on a futex
     573             :  * @hb:         the hash bucket the futex_q's reside in
     574             :  * @key:        the futex key (to distinguish it from other futex futex_q's)
     575             :  *
     576             :  * Must be called with the hb lock held.
     577             :  */
     578           0 : static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
     579             :                                         union futex_key *key)
     580             : {
     581             :         struct futex_q *this;
     582             : 
     583           0 :         plist_for_each_entry(this, &hb->chain, list) {
     584           0 :                 if (match_futex(&this->key, key))
     585             :                         return this;
     586             :         }
     587             :         return NULL;
     588             : }
     589             : 
     590           1 : static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
     591             :                                       u32 uval, u32 newval)
     592             : {
     593             :         int ret;
     594             : 
     595             :         pagefault_disable();
     596             :         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
     597             :         pagefault_enable();
     598             : 
     599           1 :         return ret;
     600             : }
     601             : 
     602      345538 : static int get_futex_value_locked(u32 *dest, u32 __user *from)
     603             : {
     604             :         int ret;
     605             : 
     606             :         pagefault_disable();
     607      345538 :         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
     608             :         pagefault_enable();
     609             : 
     610      345538 :         return ret ? -EFAULT : 0;
     611             : }
     612             : 
     613             : 
     614             : /*
     615             :  * PI code:
     616             :  */
     617           0 : static int refill_pi_state_cache(void)
     618             : {
     619             :         struct futex_pi_state *pi_state;
     620             : 
     621           0 :         if (likely(current->pi_state_cache))
     622             :                 return 0;
     623             : 
     624             :         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
     625             : 
     626           0 :         if (!pi_state)
     627             :                 return -ENOMEM;
     628             : 
     629           0 :         INIT_LIST_HEAD(&pi_state->list);
     630             :         /* pi_mutex gets initialized later */
     631           0 :         pi_state->owner = NULL;
     632           0 :         atomic_set(&pi_state->refcount, 1);
     633           0 :         pi_state->key = FUTEX_KEY_INIT;
     634             : 
     635           0 :         current->pi_state_cache = pi_state;
     636             : 
     637           0 :         return 0;
     638             : }
     639             : 
     640             : static struct futex_pi_state * alloc_pi_state(void)
     641             : {
     642           0 :         struct futex_pi_state *pi_state = current->pi_state_cache;
     643             : 
     644             :         WARN_ON(!pi_state);
     645           0 :         current->pi_state_cache = NULL;
     646             : 
     647             :         return pi_state;
     648             : }
     649             : 
     650             : /*
     651             :  * Must be called with the hb lock held.
     652             :  */
     653           0 : static void free_pi_state(struct futex_pi_state *pi_state)
     654             : {
     655           0 :         if (!pi_state)
     656             :                 return;
     657             : 
     658           0 :         if (!atomic_dec_and_test(&pi_state->refcount))
     659             :                 return;
     660             : 
     661             :         /*
     662             :          * If pi_state->owner is NULL, the owner is most probably dying
     663             :          * and has cleaned up the pi_state already
     664             :          */
     665           0 :         if (pi_state->owner) {
     666           0 :                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
     667           0 :                 list_del_init(&pi_state->list);
     668           0 :                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
     669             : 
     670           0 :                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
     671             :         }
     672             : 
     673           0 :         if (current->pi_state_cache)
     674           0 :                 kfree(pi_state);
     675             :         else {
     676             :                 /*
     677             :                  * pi_state->list is already empty.
     678             :                  * clear pi_state->owner.
     679             :                  * refcount is at 0 - put it back to 1.
     680             :                  */
     681           0 :                 pi_state->owner = NULL;
     682           0 :                 atomic_set(&pi_state->refcount, 1);
     683           0 :                 current->pi_state_cache = pi_state;
     684             :         }
     685             : }
     686             : 
     687             : /*
     688             :  * Look up the task based on what TID userspace gave us.
     689             :  * We dont trust it.
     690             :  */
     691           0 : static struct task_struct * futex_find_get_task(pid_t pid)
     692             : {
     693             :         struct task_struct *p;
     694             : 
     695             :         rcu_read_lock();
     696           0 :         p = find_task_by_vpid(pid);
     697           0 :         if (p)
     698           0 :                 get_task_struct(p);
     699             : 
     700             :         rcu_read_unlock();
     701             : 
     702           0 :         return p;
     703             : }
     704             : 
     705             : /*
     706             :  * This task is holding PI mutexes at exit time => bad.
     707             :  * Kernel cleans up PI-state, but userspace is likely hosed.
     708             :  * (Robust-futex cleanup is separate and might save the day for userspace.)
     709             :  */
     710           0 : void exit_pi_state_list(struct task_struct *curr)
     711             : {
     712           0 :         struct list_head *next, *head = &curr->pi_state_list;
     713             :         struct futex_pi_state *pi_state;
     714             :         struct futex_hash_bucket *hb;
     715           0 :         union futex_key key = FUTEX_KEY_INIT;
     716             : 
     717           0 :         if (!futex_cmpxchg_enabled)
     718           0 :                 return;
     719             :         /*
     720             :          * We are a ZOMBIE and nobody can enqueue itself on
     721             :          * pi_state_list anymore, but we have to be careful
     722             :          * versus waiters unqueueing themselves:
     723             :          */
     724           0 :         raw_spin_lock_irq(&curr->pi_lock);
     725           0 :         while (!list_empty(head)) {
     726             : 
     727             :                 next = head->next;
     728             :                 pi_state = list_entry(next, struct futex_pi_state, list);
     729           0 :                 key = pi_state->key;
     730             :                 hb = hash_futex(&key);
     731           0 :                 raw_spin_unlock_irq(&curr->pi_lock);
     732             : 
     733             :                 spin_lock(&hb->lock);
     734             : 
     735           0 :                 raw_spin_lock_irq(&curr->pi_lock);
     736             :                 /*
     737             :                  * We dropped the pi-lock, so re-check whether this
     738             :                  * task still owns the PI-state:
     739             :                  */
     740           0 :                 if (head->next != next) {
     741             :                         spin_unlock(&hb->lock);
     742           0 :                         continue;
     743             :                 }
     744             : 
     745             :                 WARN_ON(pi_state->owner != curr);
     746             :                 WARN_ON(list_empty(&pi_state->list));
     747           0 :                 list_del_init(&pi_state->list);
     748           0 :                 pi_state->owner = NULL;
     749           0 :                 raw_spin_unlock_irq(&curr->pi_lock);
     750             : 
     751           0 :                 rt_mutex_unlock(&pi_state->pi_mutex);
     752             : 
     753             :                 spin_unlock(&hb->lock);
     754             : 
     755           0 :                 raw_spin_lock_irq(&curr->pi_lock);
     756             :         }
     757           0 :         raw_spin_unlock_irq(&curr->pi_lock);
     758             : }
     759             : 
     760             : /*
     761             :  * We need to check the following states:
     762             :  *
     763             :  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
     764             :  *
     765             :  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
     766             :  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
     767             :  *
     768             :  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
     769             :  *
     770             :  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
     771             :  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
     772             :  *
     773             :  * [6]  Found  | Found    | task      | 0         | 1      | Valid
     774             :  *
     775             :  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
     776             :  *
     777             :  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
     778             :  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
     779             :  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
     780             :  *
     781             :  * [1]  Indicates that the kernel can acquire the futex atomically. We
     782             :  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
     783             :  *
     784             :  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
     785             :  *      thread is found then it indicates that the owner TID has died.
     786             :  *
     787             :  * [3]  Invalid. The waiter is queued on a non PI futex
     788             :  *
     789             :  * [4]  Valid state after exit_robust_list(), which sets the user space
     790             :  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
     791             :  *
     792             :  * [5]  The user space value got manipulated between exit_robust_list()
     793             :  *      and exit_pi_state_list()
     794             :  *
     795             :  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
     796             :  *      the pi_state but cannot access the user space value.
     797             :  *
     798             :  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
     799             :  *
     800             :  * [8]  Owner and user space value match
     801             :  *
     802             :  * [9]  There is no transient state which sets the user space TID to 0
     803             :  *      except exit_robust_list(), but this is indicated by the
     804             :  *      FUTEX_OWNER_DIED bit. See [4]
     805             :  *
     806             :  * [10] There is no transient state which leaves owner and user space
     807             :  *      TID out of sync.
     808             :  */
     809             : 
     810             : /*
     811             :  * Validate that the existing waiter has a pi_state and sanity check
     812             :  * the pi_state against the user space value. If correct, attach to
     813             :  * it.
     814             :  */
     815           0 : static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
     816             :                               struct futex_pi_state **ps)
     817             : {
     818           0 :         pid_t pid = uval & FUTEX_TID_MASK;
     819             : 
     820             :         /*
     821             :          * Userspace might have messed up non-PI and PI futexes [3]
     822             :          */
     823           0 :         if (unlikely(!pi_state))
     824             :                 return -EINVAL;
     825             : 
     826           0 :         WARN_ON(!atomic_read(&pi_state->refcount));
     827             : 
     828             :         /*
     829             :          * Handle the owner died case:
     830             :          */
     831           0 :         if (uval & FUTEX_OWNER_DIED) {
     832             :                 /*
     833             :                  * exit_pi_state_list sets owner to NULL and wakes the
     834             :                  * topmost waiter. The task which acquires the
     835             :                  * pi_state->rt_mutex will fixup owner.
     836             :                  */
     837           0 :                 if (!pi_state->owner) {
     838             :                         /*
     839             :                          * No pi state owner, but the user space TID
     840             :                          * is not 0. Inconsistent state. [5]
     841             :                          */
     842           0 :                         if (pid)
     843             :                                 return -EINVAL;
     844             :                         /*
     845             :                          * Take a ref on the state and return success. [4]
     846             :                          */
     847             :                         goto out_state;
     848             :                 }
     849             : 
     850             :                 /*
     851             :                  * If TID is 0, then either the dying owner has not
     852             :                  * yet executed exit_pi_state_list() or some waiter
     853             :                  * acquired the rtmutex in the pi state, but did not
     854             :                  * yet fixup the TID in user space.
     855             :                  *
     856             :                  * Take a ref on the state and return success. [6]
     857             :                  */
     858           0 :                 if (!pid)
     859             :                         goto out_state;
     860             :         } else {
     861             :                 /*
     862             :                  * If the owner died bit is not set, then the pi_state
     863             :                  * must have an owner. [7]
     864             :                  */
     865           0 :                 if (!pi_state->owner)
     866             :                         return -EINVAL;
     867             :         }
     868             : 
     869             :         /*
     870             :          * Bail out if user space manipulated the futex value. If pi
     871             :          * state exists then the owner TID must be the same as the
     872             :          * user space TID. [9/10]
     873             :          */
     874           0 :         if (pid != task_pid_vnr(pi_state->owner))
     875             :                 return -EINVAL;
     876             : out_state:
     877           0 :         atomic_inc(&pi_state->refcount);
     878           0 :         *ps = pi_state;
     879           0 :         return 0;
     880             : }
     881             : 
     882             : /*
     883             :  * Lookup the task for the TID provided from user space and attach to
     884             :  * it after doing proper sanity checks.
     885             :  */
     886           0 : static int attach_to_pi_owner(u32 uval, union futex_key *key,
     887             :                               struct futex_pi_state **ps)
     888             : {
     889           0 :         pid_t pid = uval & FUTEX_TID_MASK;
     890             :         struct futex_pi_state *pi_state;
     891             :         struct task_struct *p;
     892             : 
     893             :         /*
     894             :          * We are the first waiter - try to look up the real owner and attach
     895             :          * the new pi_state to it, but bail out when TID = 0 [1]
     896             :          */
     897           0 :         if (!pid)
     898             :                 return -ESRCH;
     899           0 :         p = futex_find_get_task(pid);
     900           0 :         if (!p)
     901             :                 return -ESRCH;
     902             : 
     903           0 :         if (!p->mm) {
     904             :                 put_task_struct(p);
     905             :                 return -EPERM;
     906             :         }
     907             : 
     908             :         /*
     909             :          * We need to look at the task state flags to figure out,
     910             :          * whether the task is exiting. To protect against the do_exit
     911             :          * change of the task flags, we do this protected by
     912             :          * p->pi_lock:
     913             :          */
     914           0 :         raw_spin_lock_irq(&p->pi_lock);
     915           0 :         if (unlikely(p->flags & PF_EXITING)) {
     916             :                 /*
     917             :                  * The task is on the way out. When PF_EXITPIDONE is
     918             :                  * set, we know that the task has finished the
     919             :                  * cleanup:
     920             :                  */
     921           0 :                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
     922             : 
     923           0 :                 raw_spin_unlock_irq(&p->pi_lock);
     924             :                 put_task_struct(p);
     925           0 :                 return ret;
     926             :         }
     927             : 
     928             :         /*
     929             :          * No existing pi state. First waiter. [2]
     930             :          */
     931             :         pi_state = alloc_pi_state();
     932             : 
     933             :         /*
     934             :          * Initialize the pi_mutex in locked state and make @p
     935             :          * the owner of it:
     936             :          */
     937           0 :         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
     938             : 
     939             :         /* Store the key for possible exit cleanups: */
     940           0 :         pi_state->key = *key;
     941             : 
     942             :         WARN_ON(!list_empty(&pi_state->list));
     943           0 :         list_add(&pi_state->list, &p->pi_state_list);
     944           0 :         pi_state->owner = p;
     945           0 :         raw_spin_unlock_irq(&p->pi_lock);
     946             : 
     947             :         put_task_struct(p);
     948             : 
     949           0 :         *ps = pi_state;
     950             : 
     951           0 :         return 0;
     952             : }
     953             : 
     954           0 : static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
     955             :                            union futex_key *key, struct futex_pi_state **ps)
     956             : {
     957           0 :         struct futex_q *match = futex_top_waiter(hb, key);
     958             : 
     959             :         /*
     960             :          * If there is a waiter on that futex, validate it and
     961             :          * attach to the pi_state when the validation succeeds.
     962             :          */
     963           0 :         if (match)
     964           0 :                 return attach_to_pi_state(uval, match->pi_state, ps);
     965             : 
     966             :         /*
     967             :          * We are the first waiter - try to look up the owner based on
     968             :          * @uval and attach to it.
     969             :          */
     970           0 :         return attach_to_pi_owner(uval, key, ps);
     971             : }
     972             : 
     973           0 : static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
     974             : {
     975             :         u32 uninitialized_var(curval);
     976             : 
     977           0 :         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
     978             :                 return -EFAULT;
     979             : 
     980             :         /*If user space value changed, let the caller retry */
     981           0 :         return curval != uval ? -EAGAIN : 0;
     982             : }
     983             : 
     984             : /**
     985             :  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
     986             :  * @uaddr:              the pi futex user address
     987             :  * @hb:                 the pi futex hash bucket
     988             :  * @key:                the futex key associated with uaddr and hb
     989             :  * @ps:                 the pi_state pointer where we store the result of the
     990             :  *                      lookup
     991             :  * @task:               the task to perform the atomic lock work for.  This will
     992             :  *                      be "current" except in the case of requeue pi.
     993             :  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
     994             :  *
     995             :  * Return:
     996             :  *  0 - ready to wait;
     997             :  *  1 - acquired the lock;
     998             :  * <0 - error
     999             :  *
    1000             :  * The hb->lock and futex_key refs shall be held by the caller.
    1001             :  */
    1002           0 : static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
    1003             :                                 union futex_key *key,
    1004             :                                 struct futex_pi_state **ps,
    1005             :                                 struct task_struct *task, int set_waiters)
    1006             : {
    1007           0 :         u32 uval, newval, vpid = task_pid_vnr(task);
    1008             :         struct futex_q *match;
    1009             :         int ret;
    1010             : 
    1011             :         /*
    1012             :          * Read the user space value first so we can validate a few
    1013             :          * things before proceeding further.
    1014             :          */
    1015           0 :         if (get_futex_value_locked(&uval, uaddr))
    1016             :                 return -EFAULT;
    1017             : 
    1018             :         /*
    1019             :          * Detect deadlocks.
    1020             :          */
    1021           0 :         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
    1022             :                 return -EDEADLK;
    1023             : 
    1024             :         /*
    1025             :          * Lookup existing state first. If it exists, try to attach to
    1026             :          * its pi_state.
    1027             :          */
    1028           0 :         match = futex_top_waiter(hb, key);
    1029           0 :         if (match)
    1030           0 :                 return attach_to_pi_state(uval, match->pi_state, ps);
    1031             : 
    1032             :         /*
    1033             :          * No waiter and user TID is 0. We are here because the
    1034             :          * waiters or the owner died bit is set or called from
    1035             :          * requeue_cmp_pi or for whatever reason something took the
    1036             :          * syscall.
    1037             :          */
    1038           0 :         if (!(uval & FUTEX_TID_MASK)) {
    1039             :                 /*
    1040             :                  * We take over the futex. No other waiters and the user space
    1041             :                  * TID is 0. We preserve the owner died bit.
    1042             :                  */
    1043           0 :                 newval = uval & FUTEX_OWNER_DIED;
    1044           0 :                 newval |= vpid;
    1045             : 
    1046             :                 /* The futex requeue_pi code can enforce the waiters bit */
    1047           0 :                 if (set_waiters)
    1048           0 :                         newval |= FUTEX_WAITERS;
    1049             : 
    1050           0 :                 ret = lock_pi_update_atomic(uaddr, uval, newval);
    1051             :                 /* If the take over worked, return 1 */
    1052           0 :                 return ret < 0 ? ret : 1;
    1053             :         }
    1054             : 
    1055             :         /*
    1056             :          * First waiter. Set the waiters bit before attaching ourself to
    1057             :          * the owner. If owner tries to unlock, it will be forced into
    1058             :          * the kernel and blocked on hb->lock.
    1059             :          */
    1060           0 :         newval = uval | FUTEX_WAITERS;
    1061           0 :         ret = lock_pi_update_atomic(uaddr, uval, newval);
    1062           0 :         if (ret)
    1063             :                 return ret;
    1064             :         /*
    1065             :          * If the update of the user space value succeeded, we try to
    1066             :          * attach to the owner. If that fails, no harm done, we only
    1067             :          * set the FUTEX_WAITERS bit in the user space variable.
    1068             :          */
    1069           0 :         return attach_to_pi_owner(uval, key, ps);
    1070             : }
    1071             : 
    1072             : /**
    1073             :  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
    1074             :  * @q:  The futex_q to unqueue
    1075             :  *
    1076             :  * The q->lock_ptr must not be NULL and must be held by the caller.
    1077             :  */
    1078           0 : static void __unqueue_futex(struct futex_q *q)
    1079             : {
    1080             :         struct futex_hash_bucket *hb;
    1081             : 
    1082      345257 :         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
    1083      345257 :             || WARN_ON(plist_node_empty(&q->list)))
    1084           0 :                 return;
    1085             : 
    1086      345257 :         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
    1087      345257 :         plist_del(&q->list, &hb->chain);
    1088             :         hb_waiters_dec(hb);
    1089             : }
    1090             : 
    1091             : /*
    1092             :  * The hash bucket lock must be held when this is called.
    1093             :  * Afterwards, the futex_q must not be accessed.
    1094             :  */
    1095      345257 : static void wake_futex(struct futex_q *q)
    1096             : {
    1097      345257 :         struct task_struct *p = q->task;
    1098             : 
    1099      345257 :         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
    1100      345257 :                 return;
    1101             : 
    1102             :         /*
    1103             :          * We set q->lock_ptr = NULL _before_ we wake up the task. If
    1104             :          * a non-futex wake up happens on another CPU then the task
    1105             :          * might exit and p would dereference a non-existing task
    1106             :          * struct. Prevent this by holding a reference on p across the
    1107             :          * wake up.
    1108             :          */
    1109      345257 :         get_task_struct(p);
    1110             : 
    1111             :         __unqueue_futex(q);
    1112             :         /*
    1113             :          * The waiting task can free the futex_q as soon as
    1114             :          * q->lock_ptr = NULL is written, without taking any locks. A
    1115             :          * memory barrier is required here to prevent the following
    1116             :          * store to lock_ptr from getting ahead of the plist_del.
    1117             :          */
    1118      345257 :         smp_wmb();
    1119      345257 :         q->lock_ptr = NULL;
    1120             : 
    1121      345257 :         wake_up_state(p, TASK_NORMAL);
    1122             :         put_task_struct(p);
    1123             : }
    1124             : 
    1125           0 : static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
    1126             : {
    1127             :         struct task_struct *new_owner;
    1128           0 :         struct futex_pi_state *pi_state = this->pi_state;
    1129             :         u32 uninitialized_var(curval), newval;
    1130             :         int ret = 0;
    1131             : 
    1132           0 :         if (!pi_state)
    1133             :                 return -EINVAL;
    1134             : 
    1135             :         /*
    1136             :          * If current does not own the pi_state then the futex is
    1137             :          * inconsistent and user space fiddled with the futex value.
    1138             :          */
    1139           0 :         if (pi_state->owner != current)
    1140             :                 return -EINVAL;
    1141             : 
    1142           0 :         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
    1143           0 :         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
    1144             : 
    1145             :         /*
    1146             :          * It is possible that the next waiter (the one that brought
    1147             :          * this owner to the kernel) timed out and is no longer
    1148             :          * waiting on the lock.
    1149             :          */
    1150           0 :         if (!new_owner)
    1151           0 :                 new_owner = this->task;
    1152             : 
    1153             :         /*
    1154             :          * We pass it to the next owner. The WAITERS bit is always
    1155             :          * kept enabled while there is PI state around. We cleanup the
    1156             :          * owner died bit, because we are the owner.
    1157             :          */
    1158           0 :         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
    1159             : 
    1160           0 :         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
    1161             :                 ret = -EFAULT;
    1162           0 :         else if (curval != uval)
    1163             :                 ret = -EINVAL;
    1164           0 :         if (ret) {
    1165           0 :                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
    1166             :                 return ret;
    1167             :         }
    1168             : 
    1169           0 :         raw_spin_lock_irq(&pi_state->owner->pi_lock);
    1170             :         WARN_ON(list_empty(&pi_state->list));
    1171           0 :         list_del_init(&pi_state->list);
    1172           0 :         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
    1173             : 
    1174           0 :         raw_spin_lock_irq(&new_owner->pi_lock);
    1175             :         WARN_ON(!list_empty(&pi_state->list));
    1176           0 :         list_add(&pi_state->list, &new_owner->pi_state_list);
    1177           0 :         pi_state->owner = new_owner;
    1178           0 :         raw_spin_unlock_irq(&new_owner->pi_lock);
    1179             : 
    1180           0 :         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
    1181           0 :         rt_mutex_unlock(&pi_state->pi_mutex);
    1182             : 
    1183             :         return 0;
    1184             : }
    1185             : 
    1186             : /*
    1187             :  * Express the locking dependencies for lockdep:
    1188             :  */
    1189             : static inline void
    1190             : double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
    1191             : {
    1192      173137 :         if (hb1 <= hb2) {
    1193             :                 spin_lock(&hb1->lock);
    1194      172824 :                 if (hb1 < hb2)
    1195      172824 :                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
    1196             :         } else { /* hb1 > hb2 */
    1197             :                 spin_lock(&hb2->lock);
    1198         313 :                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
    1199             :         }
    1200             : }
    1201             : 
    1202             : static inline void
    1203             : double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
    1204             : {
    1205             :         spin_unlock(&hb1->lock);
    1206      173137 :         if (hb1 != hb2)
    1207             :                 spin_unlock(&hb2->lock);
    1208             : }
    1209             : 
    1210             : /*
    1211             :  * Wake up waiters matching bitset queued on this futex (uaddr).
    1212             :  */
    1213             : static int
    1214      345807 : futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
    1215             : {
    1216             :         struct futex_hash_bucket *hb;
    1217             :         struct futex_q *this, *next;
    1218      345807 :         union futex_key key = FUTEX_KEY_INIT;
    1219             :         int ret;
    1220             : 
    1221      345807 :         if (!bitset)
    1222             :                 return -EINVAL;
    1223             : 
    1224      345807 :         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
    1225      345807 :         if (unlikely(ret != 0))
    1226             :                 goto out;
    1227             : 
    1228      345807 :         hb = hash_futex(&key);
    1229             : 
    1230             :         /* Make sure we really have tasks to wakeup */
    1231             :         if (!hb_waiters_pending(hb))
    1232             :                 goto out_put_key;
    1233             : 
    1234             :         spin_lock(&hb->lock);
    1235             : 
    1236      345810 :         plist_for_each_entry_safe(this, next, &hb->chain, list) {
    1237      344324 :                 if (match_futex (&this->key, &key)) {
    1238      172159 :                         if (this->pi_state || this->rt_waiter) {
    1239             :                                 ret = -EINVAL;
    1240             :                                 break;
    1241             :                         }
    1242             : 
    1243             :                         /* Check if one of the bits is set in both bitsets */
    1244      172159 :                         if (!(this->bitset & bitset))
    1245           0 :                                 continue;
    1246             : 
    1247      172159 :                         wake_futex(this);
    1248      172159 :                         if (++ret >= nr_wake)
    1249             :                                 break;
    1250             :                 }
    1251             :         }
    1252             : 
    1253             :         spin_unlock(&hb->lock);
    1254             : out_put_key:
    1255      345807 :         put_futex_key(&key);
    1256             : out:
    1257      345807 :         return ret;
    1258             : }
    1259             : 
    1260             : /*
    1261             :  * Wake up all waiters hashed on the physical page that is mapped
    1262             :  * to this virtual address:
    1263             :  */
    1264             : static int
    1265      173137 : futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
    1266             :               int nr_wake, int nr_wake2, int op)
    1267             : {
    1268      173137 :         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
    1269             :         struct futex_hash_bucket *hb1, *hb2;
    1270             :         struct futex_q *this, *next;
    1271             :         int ret, op_ret;
    1272             : 
    1273             : retry:
    1274      173137 :         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
    1275      173137 :         if (unlikely(ret != 0))
    1276             :                 goto out;
    1277      173137 :         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
    1278      173137 :         if (unlikely(ret != 0))
    1279             :                 goto out_put_key1;
    1280             : 
    1281      173137 :         hb1 = hash_futex(&key1);
    1282      173137 :         hb2 = hash_futex(&key2);
    1283             : 
    1284             : retry_private:
    1285             :         double_lock_hb(hb1, hb2);
    1286             :         op_ret = futex_atomic_op_inuser(op, uaddr2);
    1287      173137 :         if (unlikely(op_ret < 0)) {
    1288             : 
    1289             :                 double_unlock_hb(hb1, hb2);
    1290             : 
    1291             : #ifndef CONFIG_MMU
    1292             :                 /*
    1293             :                  * we don't get EFAULT from MMU faults if we don't have an MMU,
    1294             :                  * but we might get them from range checking
    1295             :                  */
    1296             :                 ret = op_ret;
    1297             :                 goto out_put_keys;
    1298             : #endif
    1299             : 
    1300           0 :                 if (unlikely(op_ret != -EFAULT)) {
    1301             :                         ret = op_ret;
    1302             :                         goto out_put_keys;
    1303             :                 }
    1304             : 
    1305           0 :                 ret = fault_in_user_writeable(uaddr2);
    1306           0 :                 if (ret)
    1307             :                         goto out_put_keys;
    1308             : 
    1309           0 :                 if (!(flags & FLAGS_SHARED))
    1310             :                         goto retry_private;
    1311             : 
    1312           0 :                 put_futex_key(&key2);
    1313           0 :                 put_futex_key(&key1);
    1314             :                 goto retry;
    1315             :         }
    1316             : 
    1317      173137 :         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
    1318      346196 :                 if (match_futex (&this->key, &key1)) {
    1319      173098 :                         if (this->pi_state || this->rt_waiter) {
    1320             :                                 ret = -EINVAL;
    1321             :                                 goto out_unlock;
    1322             :                         }
    1323      173098 :                         wake_futex(this);
    1324      173098 :                         if (++ret >= nr_wake)
    1325             :                                 break;
    1326             :                 }
    1327             :         }
    1328             : 
    1329      173137 :         if (op_ret > 0) {
    1330             :                 op_ret = 0;
    1331          38 :                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
    1332           0 :                         if (match_futex (&this->key, &key2)) {
    1333           0 :                                 if (this->pi_state || this->rt_waiter) {
    1334             :                                         ret = -EINVAL;
    1335             :                                         goto out_unlock;
    1336             :                                 }
    1337           0 :                                 wake_futex(this);
    1338           0 :                                 if (++op_ret >= nr_wake2)
    1339             :                                         break;
    1340             :                         }
    1341             :                 }
    1342          38 :                 ret += op_ret;
    1343             :         }
    1344             : 
    1345             : out_unlock:
    1346             :         double_unlock_hb(hb1, hb2);
    1347             : out_put_keys:
    1348      173137 :         put_futex_key(&key2);
    1349             : out_put_key1:
    1350      173137 :         put_futex_key(&key1);
    1351             : out:
    1352      173137 :         return ret;
    1353             : }
    1354             : 
    1355             : /**
    1356             :  * requeue_futex() - Requeue a futex_q from one hb to another
    1357             :  * @q:          the futex_q to requeue
    1358             :  * @hb1:        the source hash_bucket
    1359             :  * @hb2:        the target hash_bucket
    1360             :  * @key2:       the new key for the requeued futex_q
    1361             :  */
    1362             : static inline
    1363             : void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
    1364             :                    struct futex_hash_bucket *hb2, union futex_key *key2)
    1365             : {
    1366             : 
    1367             :         /*
    1368             :          * If key1 and key2 hash to the same bucket, no need to
    1369             :          * requeue.
    1370             :          */
    1371           0 :         if (likely(&hb1->chain != &hb2->chain)) {
    1372           0 :                 plist_del(&q->list, &hb1->chain);
    1373             :                 hb_waiters_dec(hb1);
    1374           0 :                 plist_add(&q->list, &hb2->chain);
    1375             :                 hb_waiters_inc(hb2);
    1376           0 :                 q->lock_ptr = &hb2->lock;
    1377             :         }
    1378           0 :         get_futex_key_refs(key2);
    1379           0 :         q->key = *key2;
    1380             : }
    1381             : 
    1382             : /**
    1383             :  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
    1384             :  * @q:          the futex_q
    1385             :  * @key:        the key of the requeue target futex
    1386             :  * @hb:         the hash_bucket of the requeue target futex
    1387             :  *
    1388             :  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
    1389             :  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
    1390             :  * to the requeue target futex so the waiter can detect the wakeup on the right
    1391             :  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
    1392             :  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
    1393             :  * to protect access to the pi_state to fixup the owner later.  Must be called
    1394             :  * with both q->lock_ptr and hb->lock held.
    1395             :  */
    1396             : static inline
    1397             : void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
    1398             :                            struct futex_hash_bucket *hb)
    1399             : {
    1400           0 :         get_futex_key_refs(key);
    1401           0 :         q->key = *key;
    1402             : 
    1403           0 :         __unqueue_futex(q);
    1404             : 
    1405             :         WARN_ON(!q->rt_waiter);
    1406           0 :         q->rt_waiter = NULL;
    1407             : 
    1408           0 :         q->lock_ptr = &hb->lock;
    1409             : 
    1410           0 :         wake_up_state(q->task, TASK_NORMAL);
    1411             : }
    1412             : 
    1413             : /**
    1414             :  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
    1415             :  * @pifutex:            the user address of the to futex
    1416             :  * @hb1:                the from futex hash bucket, must be locked by the caller
    1417             :  * @hb2:                the to futex hash bucket, must be locked by the caller
    1418             :  * @key1:               the from futex key
    1419             :  * @key2:               the to futex key
    1420             :  * @ps:                 address to store the pi_state pointer
    1421             :  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
    1422             :  *
    1423             :  * Try and get the lock on behalf of the top waiter if we can do it atomically.
    1424             :  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
    1425             :  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
    1426             :  * hb1 and hb2 must be held by the caller.
    1427             :  *
    1428             :  * Return:
    1429             :  *  0 - failed to acquire the lock atomically;
    1430             :  * >0 - acquired the lock, return value is vpid of the top_waiter
    1431             :  * <0 - error
    1432             :  */
    1433           0 : static int futex_proxy_trylock_atomic(u32 __user *pifutex,
    1434             :                                  struct futex_hash_bucket *hb1,
    1435             :                                  struct futex_hash_bucket *hb2,
    1436             :                                  union futex_key *key1, union futex_key *key2,
    1437             :                                  struct futex_pi_state **ps, int set_waiters)
    1438             : {
    1439             :         struct futex_q *top_waiter = NULL;
    1440             :         u32 curval;
    1441             :         int ret, vpid;
    1442             : 
    1443           0 :         if (get_futex_value_locked(&curval, pifutex))
    1444             :                 return -EFAULT;
    1445             : 
    1446             :         /*
    1447             :          * Find the top_waiter and determine if there are additional waiters.
    1448             :          * If the caller intends to requeue more than 1 waiter to pifutex,
    1449             :          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
    1450             :          * as we have means to handle the possible fault.  If not, don't set
    1451             :          * the bit unecessarily as it will force the subsequent unlock to enter
    1452             :          * the kernel.
    1453             :          */
    1454           0 :         top_waiter = futex_top_waiter(hb1, key1);
    1455             : 
    1456             :         /* There are no waiters, nothing for us to do. */
    1457           0 :         if (!top_waiter)
    1458             :                 return 0;
    1459             : 
    1460             :         /* Ensure we requeue to the expected futex. */
    1461           0 :         if (!match_futex(top_waiter->requeue_pi_key, key2))
    1462             :                 return -EINVAL;
    1463             : 
    1464             :         /*
    1465             :          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
    1466             :          * the contended case or if set_waiters is 1.  The pi_state is returned
    1467             :          * in ps in contended cases.
    1468             :          */
    1469           0 :         vpid = task_pid_vnr(top_waiter->task);
    1470           0 :         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
    1471             :                                    set_waiters);
    1472           0 :         if (ret == 1) {
    1473             :                 requeue_pi_wake_futex(top_waiter, key2, hb2);
    1474           0 :                 return vpid;
    1475             :         }
    1476             :         return ret;
    1477             : }
    1478             : 
    1479             : /**
    1480             :  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
    1481             :  * @uaddr1:     source futex user address
    1482             :  * @flags:      futex flags (FLAGS_SHARED, etc.)
    1483             :  * @uaddr2:     target futex user address
    1484             :  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
    1485             :  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
    1486             :  * @cmpval:     @uaddr1 expected value (or %NULL)
    1487             :  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
    1488             :  *              pi futex (pi to pi requeue is not supported)
    1489             :  *
    1490             :  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
    1491             :  * uaddr2 atomically on behalf of the top waiter.
    1492             :  *
    1493             :  * Return:
    1494             :  * >=0 - on success, the number of tasks requeued or woken;
    1495             :  *  <0 - on error
    1496             :  */
    1497           0 : static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
    1498             :                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
    1499             :                          u32 *cmpval, int requeue_pi)
    1500             : {
    1501           0 :         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
    1502             :         int drop_count = 0, task_count = 0, ret;
    1503           0 :         struct futex_pi_state *pi_state = NULL;
    1504             :         struct futex_hash_bucket *hb1, *hb2;
    1505             :         struct futex_q *this, *next;
    1506             : 
    1507           0 :         if (requeue_pi) {
    1508             :                 /*
    1509             :                  * Requeue PI only works on two distinct uaddrs. This
    1510             :                  * check is only valid for private futexes. See below.
    1511             :                  */
    1512           0 :                 if (uaddr1 == uaddr2)
    1513             :                         return -EINVAL;
    1514             : 
    1515             :                 /*
    1516             :                  * requeue_pi requires a pi_state, try to allocate it now
    1517             :                  * without any locks in case it fails.
    1518             :                  */
    1519           0 :                 if (refill_pi_state_cache())
    1520             :                         return -ENOMEM;
    1521             :                 /*
    1522             :                  * requeue_pi must wake as many tasks as it can, up to nr_wake
    1523             :                  * + nr_requeue, since it acquires the rt_mutex prior to
    1524             :                  * returning to userspace, so as to not leave the rt_mutex with
    1525             :                  * waiters and no owner.  However, second and third wake-ups
    1526             :                  * cannot be predicted as they involve race conditions with the
    1527             :                  * first wake and a fault while looking up the pi_state.  Both
    1528             :                  * pthread_cond_signal() and pthread_cond_broadcast() should
    1529             :                  * use nr_wake=1.
    1530             :                  */
    1531           0 :                 if (nr_wake != 1)
    1532             :                         return -EINVAL;
    1533             :         }
    1534             : 
    1535             : retry:
    1536           0 :         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
    1537           0 :         if (unlikely(ret != 0))
    1538             :                 goto out;
    1539           0 :         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
    1540             :                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
    1541           0 :         if (unlikely(ret != 0))
    1542             :                 goto out_put_key1;
    1543             : 
    1544             :         /*
    1545             :          * The check above which compares uaddrs is not sufficient for
    1546             :          * shared futexes. We need to compare the keys:
    1547             :          */
    1548           0 :         if (requeue_pi && match_futex(&key1, &key2)) {
    1549             :                 ret = -EINVAL;
    1550             :                 goto out_put_keys;
    1551             :         }
    1552             : 
    1553           0 :         hb1 = hash_futex(&key1);
    1554           0 :         hb2 = hash_futex(&key2);
    1555             : 
    1556             : retry_private:
    1557             :         hb_waiters_inc(hb2);
    1558             :         double_lock_hb(hb1, hb2);
    1559             : 
    1560           0 :         if (likely(cmpval != NULL)) {
    1561             :                 u32 curval;
    1562             : 
    1563           0 :                 ret = get_futex_value_locked(&curval, uaddr1);
    1564             : 
    1565           0 :                 if (unlikely(ret)) {
    1566             :                         double_unlock_hb(hb1, hb2);
    1567             :                         hb_waiters_dec(hb2);
    1568             : 
    1569           0 :                         ret = get_user(curval, uaddr1);
    1570           0 :                         if (ret)
    1571             :                                 goto out_put_keys;
    1572             : 
    1573           0 :                         if (!(flags & FLAGS_SHARED))
    1574             :                                 goto retry_private;
    1575             : 
    1576             :                         put_futex_key(&key2);
    1577             :                         put_futex_key(&key1);
    1578           0 :                         goto retry;
    1579             :                 }
    1580           0 :                 if (curval != *cmpval) {
    1581             :                         ret = -EAGAIN;
    1582           0 :                         goto out_unlock;
    1583             :                 }
    1584             :         }
    1585             : 
    1586           0 :         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
    1587             :                 /*
    1588             :                  * Attempt to acquire uaddr2 and wake the top waiter. If we
    1589             :                  * intend to requeue waiters, force setting the FUTEX_WAITERS
    1590             :                  * bit.  We force this here where we are able to easily handle
    1591             :                  * faults rather in the requeue loop below.
    1592             :                  */
    1593           0 :                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
    1594             :                                                  &key2, &pi_state, nr_requeue);
    1595             : 
    1596             :                 /*
    1597             :                  * At this point the top_waiter has either taken uaddr2 or is
    1598             :                  * waiting on it.  If the former, then the pi_state will not
    1599             :                  * exist yet, look it up one more time to ensure we have a
    1600             :                  * reference to it. If the lock was taken, ret contains the
    1601             :                  * vpid of the top waiter task.
    1602             :                  */
    1603           0 :                 if (ret > 0) {
    1604             :                         WARN_ON(pi_state);
    1605           0 :                         drop_count++;
    1606           0 :                         task_count++;
    1607             :                         /*
    1608             :                          * If we acquired the lock, then the user
    1609             :                          * space value of uaddr2 should be vpid. It
    1610             :                          * cannot be changed by the top waiter as it
    1611             :                          * is blocked on hb2 lock if it tries to do
    1612             :                          * so. If something fiddled with it behind our
    1613             :                          * back the pi state lookup might unearth
    1614             :                          * it. So we rather use the known value than
    1615             :                          * rereading and handing potential crap to
    1616             :                          * lookup_pi_state.
    1617             :                          */
    1618           0 :                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
    1619             :                 }
    1620             : 
    1621           0 :                 switch (ret) {
    1622             :                 case 0:
    1623             :                         break;
    1624             :                 case -EFAULT:
    1625           0 :                         free_pi_state(pi_state);
    1626           0 :                         pi_state = NULL;
    1627             :                         double_unlock_hb(hb1, hb2);
    1628             :                         hb_waiters_dec(hb2);
    1629             :                         put_futex_key(&key2);
    1630             :                         put_futex_key(&key1);
    1631           0 :                         ret = fault_in_user_writeable(uaddr2);
    1632           0 :                         if (!ret)
    1633             :                                 goto retry;
    1634             :                         goto out;
    1635             :                 case -EAGAIN:
    1636             :                         /*
    1637             :                          * Two reasons for this:
    1638             :                          * - Owner is exiting and we just wait for the
    1639             :                          *   exit to complete.
    1640             :                          * - The user space value changed.
    1641             :                          */
    1642           0 :                         free_pi_state(pi_state);
    1643           0 :                         pi_state = NULL;
    1644             :                         double_unlock_hb(hb1, hb2);
    1645             :                         hb_waiters_dec(hb2);
    1646             :                         put_futex_key(&key2);
    1647             :                         put_futex_key(&key1);
    1648           0 :                         cond_resched();
    1649           0 :                         goto retry;
    1650             :                 default:
    1651             :                         goto out_unlock;
    1652             :                 }
    1653             :         }
    1654             : 
    1655           0 :         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
    1656           0 :                 if (task_count - nr_wake >= nr_requeue)
    1657             :                         break;
    1658             : 
    1659           0 :                 if (!match_futex(&this->key, &key1))
    1660           0 :                         continue;
    1661             : 
    1662             :                 /*
    1663             :                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
    1664             :                  * be paired with each other and no other futex ops.
    1665             :                  *
    1666             :                  * We should never be requeueing a futex_q with a pi_state,
    1667             :                  * which is awaiting a futex_unlock_pi().
    1668             :                  */
    1669           0 :                 if ((requeue_pi && !this->rt_waiter) ||
    1670           0 :                     (!requeue_pi && this->rt_waiter) ||
    1671           0 :                     this->pi_state) {
    1672             :                         ret = -EINVAL;
    1673             :                         break;
    1674             :                 }
    1675             : 
    1676             :                 /*
    1677             :                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
    1678             :                  * lock, we already woke the top_waiter.  If not, it will be
    1679             :                  * woken by futex_unlock_pi().
    1680             :                  */
    1681           0 :                 if (++task_count <= nr_wake && !requeue_pi) {
    1682           0 :                         wake_futex(this);
    1683           0 :                         continue;
    1684             :                 }
    1685             : 
    1686             :                 /* Ensure we requeue to the expected futex for requeue_pi. */
    1687           0 :                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
    1688             :                         ret = -EINVAL;
    1689             :                         break;
    1690             :                 }
    1691             : 
    1692             :                 /*
    1693             :                  * Requeue nr_requeue waiters and possibly one more in the case
    1694             :                  * of requeue_pi if we couldn't acquire the lock atomically.
    1695             :                  */
    1696           0 :                 if (requeue_pi) {
    1697             :                         /* Prepare the waiter to take the rt_mutex. */
    1698           0 :                         atomic_inc(&pi_state->refcount);
    1699           0 :                         this->pi_state = pi_state;
    1700           0 :                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
    1701             :                                                         this->rt_waiter,
    1702             :                                                         this->task);
    1703           0 :                         if (ret == 1) {
    1704             :                                 /* We got the lock. */
    1705             :                                 requeue_pi_wake_futex(this, &key2, hb2);
    1706           0 :                                 drop_count++;
    1707           0 :                                 continue;
    1708           0 :                         } else if (ret) {
    1709             :                                 /* -EDEADLK */
    1710           0 :                                 this->pi_state = NULL;
    1711           0 :                                 free_pi_state(pi_state);
    1712           0 :                                 goto out_unlock;
    1713             :                         }
    1714             :                 }
    1715             :                 requeue_futex(this, hb1, hb2, &key2);
    1716           0 :                 drop_count++;
    1717             :         }
    1718             : 
    1719             : out_unlock:
    1720           0 :         free_pi_state(pi_state);
    1721             :         double_unlock_hb(hb1, hb2);
    1722             :         hb_waiters_dec(hb2);
    1723             : 
    1724             :         /*
    1725             :          * drop_futex_key_refs() must be called outside the spinlocks. During
    1726             :          * the requeue we moved futex_q's from the hash bucket at key1 to the
    1727             :          * one at key2 and updated their key pointer.  We no longer need to
    1728             :          * hold the references to key1.
    1729             :          */
    1730           0 :         while (--drop_count >= 0)
    1731           0 :                 drop_futex_key_refs(&key1);
    1732             : 
    1733             : out_put_keys:
    1734             :         put_futex_key(&key2);
    1735             : out_put_key1:
    1736             :         put_futex_key(&key1);
    1737             : out:
    1738           0 :         return ret ? ret : task_count;
    1739             : }
    1740             : 
    1741             : /* The key must be already stored in q->key. */
    1742             : static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
    1743             :         __acquires(&hb->lock)
    1744             : {
    1745             :         struct futex_hash_bucket *hb;
    1746             : 
    1747      345538 :         hb = hash_futex(&q->key);
    1748             : 
    1749             :         /*
    1750             :          * Increment the counter before taking the lock so that
    1751             :          * a potential waker won't miss a to-be-slept task that is
    1752             :          * waiting for the spinlock. This is safe as all queue_lock()
    1753             :          * users end up calling queue_me(). Similarly, for housekeeping,
    1754             :          * decrement the counter at queue_unlock() when some error has
    1755             :          * occurred and we don't end up adding the task to the list.
    1756             :          */
    1757             :         hb_waiters_inc(hb);
    1758             : 
    1759      345538 :         q->lock_ptr = &hb->lock;
    1760             : 
    1761             :         spin_lock(&hb->lock); /* implies MB (A) */
    1762             :         return hb;
    1763             : }
    1764             : 
    1765             : static inline void
    1766             : queue_unlock(struct futex_hash_bucket *hb)
    1767             :         __releases(&hb->lock)
    1768             : {
    1769             :         spin_unlock(&hb->lock);
    1770             :         hb_waiters_dec(hb);
    1771             : }
    1772             : 
    1773             : /**
    1774             :  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
    1775             :  * @q:  The futex_q to enqueue
    1776             :  * @hb: The destination hash bucket
    1777             :  *
    1778             :  * The hb->lock must be held by the caller, and is released here. A call to
    1779             :  * queue_me() is typically paired with exactly one call to unqueue_me().  The
    1780             :  * exceptions involve the PI related operations, which may use unqueue_me_pi()
    1781             :  * or nothing if the unqueue is done as part of the wake process and the unqueue
    1782             :  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
    1783             :  * an example).
    1784             :  */
    1785             : static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
    1786             :         __releases(&hb->lock)
    1787             : {
    1788             :         int prio;
    1789             : 
    1790             :         /*
    1791             :          * The priority used to register this element is
    1792             :          * - either the real thread-priority for the real-time threads
    1793             :          * (i.e. threads with a priority lower than MAX_RT_PRIO)
    1794             :          * - or MAX_RT_PRIO for non-RT threads.
    1795             :          * Thus, all RT-threads are woken first in priority order, and
    1796             :          * the others are woken last, in FIFO order.
    1797             :          */
    1798      345260 :         prio = min(current->normal_prio, MAX_RT_PRIO);
    1799             : 
    1800             :         plist_node_init(&q->list, prio);
    1801      345260 :         plist_add(&q->list, &hb->chain);
    1802      345260 :         q->task = current;
    1803             :         spin_unlock(&hb->lock);
    1804             : }
    1805             : 
    1806             : /**
    1807             :  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
    1808             :  * @q:  The futex_q to unqueue
    1809             :  *
    1810             :  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
    1811             :  * be paired with exactly one earlier call to queue_me().
    1812             :  *
    1813             :  * Return:
    1814             :  *   1 - if the futex_q was still queued (and we removed unqueued it);
    1815             :  *   0 - if the futex_q was already removed by the waking thread
    1816             :  */
    1817      345257 : static int unqueue_me(struct futex_q *q)
    1818             : {
    1819             :         spinlock_t *lock_ptr;
    1820             :         int ret = 0;
    1821             : 
    1822             :         /* In the common case we don't take the spinlock, which is nice. */
    1823             : retry:
    1824      345257 :         lock_ptr = q->lock_ptr;
    1825      345257 :         barrier();
    1826      345257 :         if (lock_ptr != NULL) {
    1827             :                 spin_lock(lock_ptr);
    1828             :                 /*
    1829             :                  * q->lock_ptr can change between reading it and
    1830             :                  * spin_lock(), causing us to take the wrong lock.  This
    1831             :                  * corrects the race condition.
    1832             :                  *
    1833             :                  * Reasoning goes like this: if we have the wrong lock,
    1834             :                  * q->lock_ptr must have changed (maybe several times)
    1835             :                  * between reading it and the spin_lock().  It can
    1836             :                  * change again after the spin_lock() but only if it was
    1837             :                  * already changed before the spin_lock().  It cannot,
    1838             :                  * however, change back to the original value.  Therefore
    1839             :                  * we can detect whether we acquired the correct lock.
    1840             :                  */
    1841           0 :                 if (unlikely(lock_ptr != q->lock_ptr)) {
    1842             :                         spin_unlock(lock_ptr);
    1843             :                         goto retry;
    1844             :                 }
    1845             :                 __unqueue_futex(q);
    1846             : 
    1847             :                 BUG_ON(q->pi_state);
    1848             : 
    1849             :                 spin_unlock(lock_ptr);
    1850             :                 ret = 1;
    1851             :         }
    1852             : 
    1853      345257 :         drop_futex_key_refs(&q->key);
    1854      345257 :         return ret;
    1855             : }
    1856             : 
    1857             : /*
    1858             :  * PI futexes can not be requeued and must remove themself from the
    1859             :  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
    1860             :  * and dropped here.
    1861             :  */
    1862           0 : static void unqueue_me_pi(struct futex_q *q)
    1863             :         __releases(q->lock_ptr)
    1864             : {
    1865             :         __unqueue_futex(q);
    1866             : 
    1867             :         BUG_ON(!q->pi_state);
    1868           0 :         free_pi_state(q->pi_state);
    1869           0 :         q->pi_state = NULL;
    1870             : 
    1871             :         spin_unlock(q->lock_ptr);
    1872           0 : }
    1873             : 
    1874             : /*
    1875             :  * Fixup the pi_state owner with the new owner.
    1876             :  *
    1877             :  * Must be called with hash bucket lock held and mm->sem held for non
    1878             :  * private futexes.
    1879             :  */
    1880           0 : static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
    1881             :                                 struct task_struct *newowner)
    1882             : {
    1883           0 :         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
    1884           0 :         struct futex_pi_state *pi_state = q->pi_state;
    1885           0 :         struct task_struct *oldowner = pi_state->owner;
    1886             :         u32 uval, uninitialized_var(curval), newval;
    1887             :         int ret;
    1888             : 
    1889             :         /* Owner died? */
    1890           0 :         if (!pi_state->owner)
    1891           0 :                 newtid |= FUTEX_OWNER_DIED;
    1892             : 
    1893             :         /*
    1894             :          * We are here either because we stole the rtmutex from the
    1895             :          * previous highest priority waiter or we are the highest priority
    1896             :          * waiter but failed to get the rtmutex the first time.
    1897             :          * We have to replace the newowner TID in the user space variable.
    1898             :          * This must be atomic as we have to preserve the owner died bit here.
    1899             :          *
    1900             :          * Note: We write the user space value _before_ changing the pi_state
    1901             :          * because we can fault here. Imagine swapped out pages or a fork
    1902             :          * that marked all the anonymous memory readonly for cow.
    1903             :          *
    1904             :          * Modifying pi_state _before_ the user space value would
    1905             :          * leave the pi_state in an inconsistent state when we fault
    1906             :          * here, because we need to drop the hash bucket lock to
    1907             :          * handle the fault. This might be observed in the PID check
    1908             :          * in lookup_pi_state.
    1909             :          */
    1910             : retry:
    1911           0 :         if (get_futex_value_locked(&uval, uaddr))
    1912             :                 goto handle_fault;
    1913             : 
    1914             :         while (1) {
    1915           0 :                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
    1916             : 
    1917           0 :                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
    1918             :                         goto handle_fault;
    1919           0 :                 if (curval == uval)
    1920             :                         break;
    1921           0 :                 uval = curval;
    1922             :         }
    1923             : 
    1924             :         /*
    1925             :          * We fixed up user space. Now we need to fix the pi_state
    1926             :          * itself.
    1927             :          */
    1928           0 :         if (pi_state->owner != NULL) {
    1929           0 :                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
    1930             :                 WARN_ON(list_empty(&pi_state->list));
    1931           0 :                 list_del_init(&pi_state->list);
    1932           0 :                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
    1933             :         }
    1934             : 
    1935           0 :         pi_state->owner = newowner;
    1936             : 
    1937           0 :         raw_spin_lock_irq(&newowner->pi_lock);
    1938             :         WARN_ON(!list_empty(&pi_state->list));
    1939           0 :         list_add(&pi_state->list, &newowner->pi_state_list);
    1940           0 :         raw_spin_unlock_irq(&newowner->pi_lock);
    1941             :         return 0;
    1942             : 
    1943             :         /*
    1944             :          * To handle the page fault we need to drop the hash bucket
    1945             :          * lock here. That gives the other task (either the highest priority
    1946             :          * waiter itself or the task which stole the rtmutex) the
    1947             :          * chance to try the fixup of the pi_state. So once we are
    1948             :          * back from handling the fault we need to check the pi_state
    1949             :          * after reacquiring the hash bucket lock and before trying to
    1950             :          * do another fixup. When the fixup has been done already we
    1951             :          * simply return.
    1952             :          */
    1953             : handle_fault:
    1954             :         spin_unlock(q->lock_ptr);
    1955             : 
    1956           0 :         ret = fault_in_user_writeable(uaddr);
    1957             : 
    1958             :         spin_lock(q->lock_ptr);
    1959             : 
    1960             :         /*
    1961             :          * Check if someone else fixed it for us:
    1962             :          */
    1963           0 :         if (pi_state->owner != oldowner)
    1964             :                 return 0;
    1965             : 
    1966           0 :         if (ret)
    1967             :                 return ret;
    1968             : 
    1969             :         goto retry;
    1970             : }
    1971             : 
    1972             : static long futex_wait_restart(struct restart_block *restart);
    1973             : 
    1974             : /**
    1975             :  * fixup_owner() - Post lock pi_state and corner case management
    1976             :  * @uaddr:      user address of the futex
    1977             :  * @q:          futex_q (contains pi_state and access to the rt_mutex)
    1978             :  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
    1979             :  *
    1980             :  * After attempting to lock an rt_mutex, this function is called to cleanup
    1981             :  * the pi_state owner as well as handle race conditions that may allow us to
    1982             :  * acquire the lock. Must be called with the hb lock held.
    1983             :  *
    1984             :  * Return:
    1985             :  *  1 - success, lock taken;
    1986             :  *  0 - success, lock not taken;
    1987             :  * <0 - on error (-EFAULT)
    1988             :  */
    1989           0 : static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
    1990             : {
    1991             :         struct task_struct *owner;
    1992             :         int ret = 0;
    1993             : 
    1994           0 :         if (locked) {
    1995             :                 /*
    1996             :                  * Got the lock. We might not be the anticipated owner if we
    1997             :                  * did a lock-steal - fix up the PI-state in that case:
    1998             :                  */
    1999           0 :                 if (q->pi_state->owner != current)
    2000           0 :                         ret = fixup_pi_state_owner(uaddr, q, current);
    2001             :                 goto out;
    2002             :         }
    2003             : 
    2004             :         /*
    2005             :          * Catch the rare case, where the lock was released when we were on the
    2006             :          * way back before we locked the hash bucket.
    2007             :          */
    2008           0 :         if (q->pi_state->owner == current) {
    2009             :                 /*
    2010             :                  * Try to get the rt_mutex now. This might fail as some other
    2011             :                  * task acquired the rt_mutex after we removed ourself from the
    2012             :                  * rt_mutex waiters list.
    2013             :                  */
    2014           0 :                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
    2015             :                         locked = 1;
    2016             :                         goto out;
    2017             :                 }
    2018             : 
    2019             :                 /*
    2020             :                  * pi_state is incorrect, some other task did a lock steal and
    2021             :                  * we returned due to timeout or signal without taking the
    2022             :                  * rt_mutex. Too late.
    2023             :                  */
    2024           0 :                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
    2025           0 :                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
    2026           0 :                 if (!owner)
    2027           0 :                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
    2028           0 :                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
    2029           0 :                 ret = fixup_pi_state_owner(uaddr, q, owner);
    2030           0 :                 goto out;
    2031             :         }
    2032             : 
    2033             :         /*
    2034             :          * Paranoia check. If we did not take the lock, then we should not be
    2035             :          * the owner of the rt_mutex.
    2036             :          */
    2037           0 :         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
    2038           0 :                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
    2039             :                                 "pi-state %p\n", ret,
    2040             :                                 q->pi_state->pi_mutex.owner,
    2041             :                                 q->pi_state->owner);
    2042             : 
    2043             : out:
    2044           0 :         return ret ? ret : locked;
    2045             : }
    2046             : 
    2047             : /**
    2048             :  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
    2049             :  * @hb:         the futex hash bucket, must be locked by the caller
    2050             :  * @q:          the futex_q to queue up on
    2051             :  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
    2052             :  */
    2053      345260 : static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
    2054             :                                 struct hrtimer_sleeper *timeout)
    2055             : {
    2056             :         /*
    2057             :          * The task state is guaranteed to be set before another task can
    2058             :          * wake it. set_current_state() is implemented using set_mb() and
    2059             :          * queue_me() calls spin_unlock() upon completion, both serializing
    2060             :          * access to the hash list and forcing another memory barrier.
    2061             :          */
    2062      345260 :         set_current_state(TASK_INTERRUPTIBLE);
    2063             :         queue_me(q, hb);
    2064             : 
    2065             :         /* Arm the timer */
    2066      345260 :         if (timeout) {
    2067           0 :                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
    2068           0 :                 if (!hrtimer_active(&timeout->timer))
    2069           0 :                         timeout->task = NULL;
    2070             :         }
    2071             : 
    2072             :         /*
    2073             :          * If we have been removed from the hash list, then another task
    2074             :          * has tried to wake us, and we can skip the call to schedule().
    2075             :          */
    2076      345260 :         if (likely(!plist_node_empty(&q->list))) {
    2077             :                 /*
    2078             :                  * If the timer has already expired, current will already be
    2079             :                  * flagged for rescheduling. Only call schedule if there
    2080             :                  * is no timeout, or if it has yet to expire.
    2081             :                  */
    2082      345260 :                 if (!timeout || timeout->task)
    2083             :                         freezable_schedule();
    2084             :         }
    2085      345257 :         __set_current_state(TASK_RUNNING);
    2086      345257 : }
    2087             : 
    2088             : /**
    2089             :  * futex_wait_setup() - Prepare to wait on a futex
    2090             :  * @uaddr:      the futex userspace address
    2091             :  * @val:        the expected value
    2092             :  * @flags:      futex flags (FLAGS_SHARED, etc.)
    2093             :  * @q:          the associated futex_q
    2094             :  * @hb:         storage for hash_bucket pointer to be returned to caller
    2095             :  *
    2096             :  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
    2097             :  * compare it with the expected value.  Handle atomic faults internally.
    2098             :  * Return with the hb lock held and a q.key reference on success, and unlocked
    2099             :  * with no q.key reference on failure.
    2100             :  *
    2101             :  * Return:
    2102             :  *  0 - uaddr contains val and hb has been locked;
    2103             :  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
    2104             :  */
    2105      345538 : static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
    2106             :                            struct futex_q *q, struct futex_hash_bucket **hb)
    2107             : {
    2108             :         u32 uval;
    2109             :         int ret;
    2110             : 
    2111             :         /*
    2112             :          * Access the page AFTER the hash-bucket is locked.
    2113             :          * Order is important:
    2114             :          *
    2115             :          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
    2116             :          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
    2117             :          *
    2118             :          * The basic logical guarantee of a futex is that it blocks ONLY
    2119             :          * if cond(var) is known to be true at the time of blocking, for
    2120             :          * any cond.  If we locked the hash-bucket after testing *uaddr, that
    2121             :          * would open a race condition where we could block indefinitely with
    2122             :          * cond(var) false, which would violate the guarantee.
    2123             :          *
    2124             :          * On the other hand, we insert q and release the hash-bucket only
    2125             :          * after testing *uaddr.  This guarantees that futex_wait() will NOT
    2126             :          * absorb a wakeup if *uaddr does not match the desired values
    2127             :          * while the syscall executes.
    2128             :          */
    2129             : retry:
    2130      345538 :         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
    2131      345538 :         if (unlikely(ret != 0))
    2132             :                 return ret;
    2133             : 
    2134             : retry_private:
    2135      345538 :         *hb = queue_lock(q);
    2136             : 
    2137      345538 :         ret = get_futex_value_locked(&uval, uaddr);
    2138             : 
    2139      345538 :         if (ret) {
    2140             :                 queue_unlock(*hb);
    2141             : 
    2142           0 :                 ret = get_user(uval, uaddr);
    2143           0 :                 if (ret)
    2144             :                         goto out;
    2145             : 
    2146           0 :                 if (!(flags & FLAGS_SHARED))
    2147             :                         goto retry_private;
    2148             : 
    2149             :                 put_futex_key(&q->key);
    2150             :                 goto retry;
    2151             :         }
    2152             : 
    2153      345538 :         if (uval != val) {
    2154             :                 queue_unlock(*hb);
    2155             :                 ret = -EWOULDBLOCK;
    2156             :         }
    2157             : 
    2158             : out:
    2159      345538 :         if (ret)
    2160             :                 put_futex_key(&q->key);
    2161      345538 :         return ret;
    2162             : }
    2163             : 
    2164      345538 : static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
    2165             :                       ktime_t *abs_time, u32 bitset)
    2166             : {
    2167             :         struct hrtimer_sleeper timeout, *to = NULL;
    2168             :         struct restart_block *restart;
    2169             :         struct futex_hash_bucket *hb;
    2170      345538 :         struct futex_q q = futex_q_init;
    2171             :         int ret;
    2172             : 
    2173      345538 :         if (!bitset)
    2174             :                 return -EINVAL;
    2175      345538 :         q.bitset = bitset;
    2176             : 
    2177      345538 :         if (abs_time) {
    2178             :                 to = &timeout;
    2179             : 
    2180           0 :                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
    2181             :                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
    2182             :                                       HRTIMER_MODE_ABS);
    2183           0 :                 hrtimer_init_sleeper(to, current);
    2184           0 :                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
    2185           0 :                                              current->timer_slack_ns);
    2186             :         }
    2187             : 
    2188             : retry:
    2189             :         /*
    2190             :          * Prepare to wait on uaddr. On success, holds hb lock and increments
    2191             :          * q.key refs.
    2192             :          */
    2193      345538 :         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
    2194      345538 :         if (ret)
    2195             :                 goto out;
    2196             : 
    2197             :         /* queue_me and wait for wakeup, timeout, or a signal. */
    2198      345260 :         futex_wait_queue_me(hb, &q, to);
    2199             : 
    2200             :         /* If we were woken (and unqueued), we succeeded, whatever. */
    2201             :         ret = 0;
    2202             :         /* unqueue_me() drops q.key ref */
    2203      345257 :         if (!unqueue_me(&q))
    2204             :                 goto out;
    2205             :         ret = -ETIMEDOUT;
    2206           0 :         if (to && !to->task)
    2207             :                 goto out;
    2208             : 
    2209             :         /*
    2210             :          * We expect signal_pending(current), but we might be the
    2211             :          * victim of a spurious wakeup as well.
    2212             :          */
    2213           0 :         if (!signal_pending(current))
    2214             :                 goto retry;
    2215             : 
    2216             :         ret = -ERESTARTSYS;
    2217           0 :         if (!abs_time)
    2218             :                 goto out;
    2219             : 
    2220             :         restart = &current_thread_info()->restart_block;
    2221           0 :         restart->fn = futex_wait_restart;
    2222           0 :         restart->futex.uaddr = uaddr;
    2223           0 :         restart->futex.val = val;
    2224           0 :         restart->futex.time = abs_time->tv64;
    2225           0 :         restart->futex.bitset = bitset;
    2226           0 :         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
    2227             : 
    2228             :         ret = -ERESTART_RESTARTBLOCK;
    2229             : 
    2230             : out:
    2231      345535 :         if (to) {
    2232           0 :                 hrtimer_cancel(&to->timer);
    2233             :                 destroy_hrtimer_on_stack(&to->timer);
    2234             :         }
    2235      345535 :         return ret;
    2236             : }
    2237             : 
    2238             : 
    2239           0 : static long futex_wait_restart(struct restart_block *restart)
    2240             : {
    2241           0 :         u32 __user *uaddr = restart->futex.uaddr;
    2242             :         ktime_t t, *tp = NULL;
    2243             : 
    2244           0 :         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
    2245           0 :                 t.tv64 = restart->futex.time;
    2246             :                 tp = &t;
    2247             :         }
    2248           0 :         restart->fn = do_no_restart_syscall;
    2249             : 
    2250           0 :         return (long)futex_wait(uaddr, restart->futex.flags,
    2251             :                                 restart->futex.val, tp, restart->futex.bitset);
    2252             : }
    2253             : 
    2254             : 
    2255             : /*
    2256             :  * Userspace tried a 0 -> TID atomic transition of the futex value
    2257             :  * and failed. The kernel side here does the whole locking operation:
    2258             :  * if there are waiters then it will block, it does PI, etc. (Due to
    2259             :  * races the kernel might see a 0 value of the futex too.)
    2260             :  */
    2261           0 : static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
    2262             :                          ktime_t *time, int trylock)
    2263             : {
    2264             :         struct hrtimer_sleeper timeout, *to = NULL;
    2265             :         struct futex_hash_bucket *hb;
    2266           0 :         struct futex_q q = futex_q_init;
    2267             :         int res, ret;
    2268             : 
    2269           0 :         if (refill_pi_state_cache())
    2270             :                 return -ENOMEM;
    2271             : 
    2272           0 :         if (time) {
    2273             :                 to = &timeout;
    2274             :                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
    2275             :                                       HRTIMER_MODE_ABS);
    2276           0 :                 hrtimer_init_sleeper(to, current);
    2277             :                 hrtimer_set_expires(&to->timer, *time);
    2278             :         }
    2279             : 
    2280             : retry:
    2281           0 :         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
    2282           0 :         if (unlikely(ret != 0))
    2283             :                 goto out;
    2284             : 
    2285             : retry_private:
    2286             :         hb = queue_lock(&q);
    2287             : 
    2288           0 :         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
    2289           0 :         if (unlikely(ret)) {
    2290           0 :                 switch (ret) {
    2291             :                 case 1:
    2292             :                         /* We got the lock. */
    2293             :                         ret = 0;
    2294             :                         goto out_unlock_put_key;
    2295             :                 case -EFAULT:
    2296             :                         goto uaddr_faulted;
    2297             :                 case -EAGAIN:
    2298             :                         /*
    2299             :                          * Two reasons for this:
    2300             :                          * - Task is exiting and we just wait for the
    2301             :                          *   exit to complete.
    2302             :                          * - The user space value changed.
    2303             :                          */
    2304             :                         queue_unlock(hb);
    2305             :                         put_futex_key(&q.key);
    2306           0 :                         cond_resched();
    2307             :                         goto retry;
    2308             :                 default:
    2309             :                         goto out_unlock_put_key;
    2310             :                 }
    2311             :         }
    2312             : 
    2313             :         /*
    2314             :          * Only actually queue now that the atomic ops are done:
    2315             :          */
    2316             :         queue_me(&q, hb);
    2317             : 
    2318             :         WARN_ON(!q.pi_state);
    2319             :         /*
    2320             :          * Block on the PI mutex:
    2321             :          */
    2322           0 :         if (!trylock) {
    2323           0 :                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
    2324             :         } else {
    2325           0 :                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
    2326             :                 /* Fixup the trylock return value: */
    2327           0 :                 ret = ret ? 0 : -EWOULDBLOCK;
    2328             :         }
    2329             : 
    2330             :         spin_lock(q.lock_ptr);
    2331             :         /*
    2332             :          * Fixup the pi_state owner and possibly acquire the lock if we
    2333             :          * haven't already.
    2334             :          */
    2335           0 :         res = fixup_owner(uaddr, &q, !ret);
    2336             :         /*
    2337             :          * If fixup_owner() returned an error, proprogate that.  If it acquired
    2338             :          * the lock, clear our -ETIMEDOUT or -EINTR.
    2339             :          */
    2340           0 :         if (res)
    2341           0 :                 ret = (res < 0) ? res : 0;
    2342             : 
    2343             :         /*
    2344             :          * If fixup_owner() faulted and was unable to handle the fault, unlock
    2345             :          * it and return the fault to userspace.
    2346             :          */
    2347           0 :         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
    2348           0 :                 rt_mutex_unlock(&q.pi_state->pi_mutex);
    2349             : 
    2350             :         /* Unqueue and drop the lock */
    2351           0 :         unqueue_me_pi(&q);
    2352             : 
    2353             :         goto out_put_key;
    2354             : 
    2355             : out_unlock_put_key:
    2356             :         queue_unlock(hb);
    2357             : 
    2358             : out_put_key:
    2359             :         put_futex_key(&q.key);
    2360             : out:
    2361             :         if (to)
    2362             :                 destroy_hrtimer_on_stack(&to->timer);
    2363           0 :         return ret != -EINTR ? ret : -ERESTARTNOINTR;
    2364             : 
    2365             : uaddr_faulted:
    2366             :         queue_unlock(hb);
    2367             : 
    2368           0 :         ret = fault_in_user_writeable(uaddr);
    2369           0 :         if (ret)
    2370             :                 goto out_put_key;
    2371             : 
    2372           0 :         if (!(flags & FLAGS_SHARED))
    2373             :                 goto retry_private;
    2374             : 
    2375             :         put_futex_key(&q.key);
    2376             :         goto retry;
    2377             : }
    2378             : 
    2379             : /*
    2380             :  * Userspace attempted a TID -> 0 atomic transition, and failed.
    2381             :  * This is the in-kernel slowpath: we look up the PI state (if any),
    2382             :  * and do the rt-mutex unlock.
    2383             :  */
    2384           0 : static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
    2385             : {
    2386           0 :         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
    2387           0 :         union futex_key key = FUTEX_KEY_INIT;
    2388             :         struct futex_hash_bucket *hb;
    2389           0 :         struct futex_q *match;
    2390             :         int ret;
    2391             : 
    2392             : retry:
    2393           0 :         if (get_user(uval, uaddr))
    2394             :                 return -EFAULT;
    2395             :         /*
    2396             :          * We release only a lock we actually own:
    2397             :          */
    2398           0 :         if ((uval & FUTEX_TID_MASK) != vpid)
    2399             :                 return -EPERM;
    2400             : 
    2401           0 :         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
    2402           0 :         if (ret)
    2403             :                 return ret;
    2404             : 
    2405           0 :         hb = hash_futex(&key);
    2406             :         spin_lock(&hb->lock);
    2407             : 
    2408             :         /*
    2409             :          * Check waiters first. We do not trust user space values at
    2410             :          * all and we at least want to know if user space fiddled
    2411             :          * with the futex value instead of blindly unlocking.
    2412             :          */
    2413           0 :         match = futex_top_waiter(hb, &key);
    2414           0 :         if (match) {
    2415           0 :                 ret = wake_futex_pi(uaddr, uval, match);
    2416             :                 /*
    2417             :                  * The atomic access to the futex value generated a
    2418             :                  * pagefault, so retry the user-access and the wakeup:
    2419             :                  */
    2420           0 :                 if (ret == -EFAULT)
    2421             :                         goto pi_faulted;
    2422             :                 goto out_unlock;
    2423             :         }
    2424             : 
    2425             :         /*
    2426             :          * We have no kernel internal state, i.e. no waiters in the
    2427             :          * kernel. Waiters which are about to queue themselves are stuck
    2428             :          * on hb->lock. So we can safely ignore them. We do neither
    2429             :          * preserve the WAITERS bit not the OWNER_DIED one. We are the
    2430             :          * owner.
    2431             :          */
    2432           0 :         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
    2433             :                 goto pi_faulted;
    2434             : 
    2435             :         /*
    2436             :          * If uval has changed, let user space handle it.
    2437             :          */
    2438           0 :         ret = (curval == uval) ? 0 : -EAGAIN;
    2439             : 
    2440             : out_unlock:
    2441             :         spin_unlock(&hb->lock);
    2442             :         put_futex_key(&key);
    2443           0 :         return ret;
    2444             : 
    2445             : pi_faulted:
    2446             :         spin_unlock(&hb->lock);
    2447             :         put_futex_key(&key);
    2448             : 
    2449           0 :         ret = fault_in_user_writeable(uaddr);
    2450           0 :         if (!ret)
    2451             :                 goto retry;
    2452             : 
    2453             :         return ret;
    2454             : }
    2455             : 
    2456             : /**
    2457             :  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
    2458             :  * @hb:         the hash_bucket futex_q was original enqueued on
    2459             :  * @q:          the futex_q woken while waiting to be requeued
    2460             :  * @key2:       the futex_key of the requeue target futex
    2461             :  * @timeout:    the timeout associated with the wait (NULL if none)
    2462             :  *
    2463             :  * Detect if the task was woken on the initial futex as opposed to the requeue
    2464             :  * target futex.  If so, determine if it was a timeout or a signal that caused
    2465             :  * the wakeup and return the appropriate error code to the caller.  Must be
    2466             :  * called with the hb lock held.
    2467             :  *
    2468             :  * Return:
    2469             :  *  0 = no early wakeup detected;
    2470             :  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
    2471             :  */
    2472             : static inline
    2473             : int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
    2474             :                                    struct futex_q *q, union futex_key *key2,
    2475             :                                    struct hrtimer_sleeper *timeout)
    2476             : {
    2477             :         int ret = 0;
    2478             : 
    2479             :         /*
    2480             :          * With the hb lock held, we avoid races while we process the wakeup.
    2481             :          * We only need to hold hb (and not hb2) to ensure atomicity as the
    2482             :          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
    2483             :          * It can't be requeued from uaddr2 to something else since we don't
    2484             :          * support a PI aware source futex for requeue.
    2485             :          */
    2486           0 :         if (!match_futex(&q->key, key2)) {
    2487             :                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
    2488             :                 /*
    2489             :                  * We were woken prior to requeue by a timeout or a signal.
    2490             :                  * Unqueue the futex_q and determine which it was.
    2491             :                  */
    2492           0 :                 plist_del(&q->list, &hb->chain);
    2493             :                 hb_waiters_dec(hb);
    2494             : 
    2495             :                 /* Handle spurious wakeups gracefully */
    2496             :                 ret = -EWOULDBLOCK;
    2497           0 :                 if (timeout && !timeout->task)
    2498             :                         ret = -ETIMEDOUT;
    2499           0 :                 else if (signal_pending(current))
    2500             :                         ret = -ERESTARTNOINTR;
    2501             :         }
    2502             :         return ret;
    2503             : }
    2504             : 
    2505             : /**
    2506             :  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
    2507             :  * @uaddr:      the futex we initially wait on (non-pi)
    2508             :  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
    2509             :  *              the same type, no requeueing from private to shared, etc.
    2510             :  * @val:        the expected value of uaddr
    2511             :  * @abs_time:   absolute timeout
    2512             :  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
    2513             :  * @uaddr2:     the pi futex we will take prior to returning to user-space
    2514             :  *
    2515             :  * The caller will wait on uaddr and will be requeued by futex_requeue() to
    2516             :  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
    2517             :  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
    2518             :  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
    2519             :  * without one, the pi logic would not know which task to boost/deboost, if
    2520             :  * there was a need to.
    2521             :  *
    2522             :  * We call schedule in futex_wait_queue_me() when we enqueue and return there
    2523             :  * via the following--
    2524             :  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
    2525             :  * 2) wakeup on uaddr2 after a requeue
    2526             :  * 3) signal
    2527             :  * 4) timeout
    2528             :  *
    2529             :  * If 3, cleanup and return -ERESTARTNOINTR.
    2530             :  *
    2531             :  * If 2, we may then block on trying to take the rt_mutex and return via:
    2532             :  * 5) successful lock
    2533             :  * 6) signal
    2534             :  * 7) timeout
    2535             :  * 8) other lock acquisition failure
    2536             :  *
    2537             :  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
    2538             :  *
    2539             :  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
    2540             :  *
    2541             :  * Return:
    2542             :  *  0 - On success;
    2543             :  * <0 - On error
    2544             :  */
    2545           0 : static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
    2546             :                                  u32 val, ktime_t *abs_time, u32 bitset,
    2547             :                                  u32 __user *uaddr2)
    2548             : {
    2549             :         struct hrtimer_sleeper timeout, *to = NULL;
    2550             :         struct rt_mutex_waiter rt_waiter;
    2551           0 :         struct rt_mutex *pi_mutex = NULL;
    2552             :         struct futex_hash_bucket *hb;
    2553           0 :         union futex_key key2 = FUTEX_KEY_INIT;
    2554           0 :         struct futex_q q = futex_q_init;
    2555             :         int res, ret;
    2556             : 
    2557           0 :         if (uaddr == uaddr2)
    2558             :                 return -EINVAL;
    2559             : 
    2560           0 :         if (!bitset)
    2561             :                 return -EINVAL;
    2562             : 
    2563           0 :         if (abs_time) {
    2564             :                 to = &timeout;
    2565           0 :                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
    2566             :                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
    2567             :                                       HRTIMER_MODE_ABS);
    2568           0 :                 hrtimer_init_sleeper(to, current);
    2569           0 :                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
    2570           0 :                                              current->timer_slack_ns);
    2571             :         }
    2572             : 
    2573             :         /*
    2574             :          * The waiter is allocated on our stack, manipulated by the requeue
    2575             :          * code while we sleep on uaddr.
    2576             :          */
    2577             :         debug_rt_mutex_init_waiter(&rt_waiter);
    2578           0 :         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
    2579           0 :         RB_CLEAR_NODE(&rt_waiter.tree_entry);
    2580           0 :         rt_waiter.task = NULL;
    2581             : 
    2582           0 :         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
    2583           0 :         if (unlikely(ret != 0))
    2584             :                 goto out;
    2585             : 
    2586           0 :         q.bitset = bitset;
    2587           0 :         q.rt_waiter = &rt_waiter;
    2588           0 :         q.requeue_pi_key = &key2;
    2589             : 
    2590             :         /*
    2591             :          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
    2592             :          * count.
    2593             :          */
    2594           0 :         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
    2595           0 :         if (ret)
    2596             :                 goto out_key2;
    2597             : 
    2598             :         /*
    2599             :          * The check above which compares uaddrs is not sufficient for
    2600             :          * shared futexes. We need to compare the keys:
    2601             :          */
    2602           0 :         if (match_futex(&q.key, &key2)) {
    2603             :                 queue_unlock(hb);
    2604             :                 ret = -EINVAL;
    2605             :                 goto out_put_keys;
    2606             :         }
    2607             : 
    2608             :         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
    2609           0 :         futex_wait_queue_me(hb, &q, to);
    2610             : 
    2611             :         spin_lock(&hb->lock);
    2612           0 :         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
    2613             :         spin_unlock(&hb->lock);
    2614           0 :         if (ret)
    2615             :                 goto out_put_keys;
    2616             : 
    2617             :         /*
    2618             :          * In order for us to be here, we know our q.key == key2, and since
    2619             :          * we took the hb->lock above, we also know that futex_requeue() has
    2620             :          * completed and we no longer have to concern ourselves with a wakeup
    2621             :          * race with the atomic proxy lock acquisition by the requeue code. The
    2622             :          * futex_requeue dropped our key1 reference and incremented our key2
    2623             :          * reference count.
    2624             :          */
    2625             : 
    2626             :         /* Check if the requeue code acquired the second futex for us. */
    2627           0 :         if (!q.rt_waiter) {
    2628             :                 /*
    2629             :                  * Got the lock. We might not be the anticipated owner if we
    2630             :                  * did a lock-steal - fix up the PI-state in that case.
    2631             :                  */
    2632           0 :                 if (q.pi_state && (q.pi_state->owner != current)) {
    2633             :                         spin_lock(q.lock_ptr);
    2634           0 :                         ret = fixup_pi_state_owner(uaddr2, &q, current);
    2635             :                         spin_unlock(q.lock_ptr);
    2636             :                 }
    2637             :         } else {
    2638             :                 /*
    2639             :                  * We have been woken up by futex_unlock_pi(), a timeout, or a
    2640             :                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
    2641             :                  * the pi_state.
    2642             :                  */
    2643             :                 WARN_ON(!q.pi_state);
    2644           0 :                 pi_mutex = &q.pi_state->pi_mutex;
    2645           0 :                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
    2646             :                 debug_rt_mutex_free_waiter(&rt_waiter);
    2647             : 
    2648             :                 spin_lock(q.lock_ptr);
    2649             :                 /*
    2650             :                  * Fixup the pi_state owner and possibly acquire the lock if we
    2651             :                  * haven't already.
    2652             :                  */
    2653           0 :                 res = fixup_owner(uaddr2, &q, !ret);
    2654             :                 /*
    2655             :                  * If fixup_owner() returned an error, proprogate that.  If it
    2656             :                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
    2657             :                  */
    2658           0 :                 if (res)
    2659           0 :                         ret = (res < 0) ? res : 0;
    2660             : 
    2661             :                 /* Unqueue and drop the lock. */
    2662           0 :                 unqueue_me_pi(&q);
    2663             :         }
    2664             : 
    2665             :         /*
    2666             :          * If fixup_pi_state_owner() faulted and was unable to handle the
    2667             :          * fault, unlock the rt_mutex and return the fault to userspace.
    2668             :          */
    2669           0 :         if (ret == -EFAULT) {
    2670           0 :                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
    2671           0 :                         rt_mutex_unlock(pi_mutex);
    2672           0 :         } else if (ret == -EINTR) {
    2673             :                 /*
    2674             :                  * We've already been requeued, but cannot restart by calling
    2675             :                  * futex_lock_pi() directly. We could restart this syscall, but
    2676             :                  * it would detect that the user space "val" changed and return
    2677             :                  * -EWOULDBLOCK.  Save the overhead of the restart and return
    2678             :                  * -EWOULDBLOCK directly.
    2679             :                  */
    2680             :                 ret = -EWOULDBLOCK;
    2681             :         }
    2682             : 
    2683             : out_put_keys:
    2684             :         put_futex_key(&q.key);
    2685             : out_key2:
    2686             :         put_futex_key(&key2);
    2687             : 
    2688             : out:
    2689           0 :         if (to) {
    2690           0 :                 hrtimer_cancel(&to->timer);
    2691             :                 destroy_hrtimer_on_stack(&to->timer);
    2692             :         }
    2693           0 :         return ret;
    2694             : }
    2695             : 
    2696             : /*
    2697             :  * Support for robust futexes: the kernel cleans up held futexes at
    2698             :  * thread exit time.
    2699             :  *
    2700             :  * Implementation: user-space maintains a per-thread list of locks it
    2701             :  * is holding. Upon do_exit(), the kernel carefully walks this list,
    2702             :  * and marks all locks that are owned by this thread with the
    2703             :  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
    2704             :  * always manipulated with the lock held, so the list is private and
    2705             :  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
    2706             :  * field, to allow the kernel to clean up if the thread dies after
    2707             :  * acquiring the lock, but just before it could have added itself to
    2708             :  * the list. There can only be one such pending lock.
    2709             :  */
    2710             : 
    2711             : /**
    2712             :  * sys_set_robust_list() - Set the robust-futex list head of a task
    2713             :  * @head:       pointer to the list-head
    2714             :  * @len:        length of the list-head, as userspace expects
    2715             :  */
    2716         490 : SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
    2717             :                 size_t, len)
    2718             : {
    2719         245 :         if (!futex_cmpxchg_enabled)
    2720             :                 return -ENOSYS;
    2721             :         /*
    2722             :          * The kernel knows only one size for now:
    2723             :          */
    2724         245 :         if (unlikely(len != sizeof(*head)))
    2725             :                 return -EINVAL;
    2726             : 
    2727         245 :         current->robust_list = head;
    2728             : 
    2729             :         return 0;
    2730             : }
    2731             : 
    2732             : /**
    2733             :  * sys_get_robust_list() - Get the robust-futex list head of a task
    2734             :  * @pid:        pid of the process [zero for current task]
    2735             :  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
    2736             :  * @len_ptr:    pointer to a length field, the kernel fills in the header size
    2737             :  */
    2738           0 : SYSCALL_DEFINE3(get_robust_list, int, pid,
    2739             :                 struct robust_list_head __user * __user *, head_ptr,
    2740             :                 size_t __user *, len_ptr)
    2741             : {
    2742             :         struct robust_list_head __user *head;
    2743             :         unsigned long ret;
    2744             :         struct task_struct *p;
    2745             : 
    2746           0 :         if (!futex_cmpxchg_enabled)
    2747             :                 return -ENOSYS;
    2748             : 
    2749             :         rcu_read_lock();
    2750             : 
    2751             :         ret = -ESRCH;
    2752           0 :         if (!pid)
    2753           0 :                 p = current;
    2754             :         else {
    2755           0 :                 p = find_task_by_vpid(pid);
    2756           0 :                 if (!p)
    2757             :                         goto err_unlock;
    2758             :         }
    2759             : 
    2760             :         ret = -EPERM;
    2761           0 :         if (!ptrace_may_access(p, PTRACE_MODE_READ))
    2762             :                 goto err_unlock;
    2763             : 
    2764           0 :         head = p->robust_list;
    2765             :         rcu_read_unlock();
    2766             : 
    2767           0 :         if (put_user(sizeof(*head), len_ptr))
    2768             :                 return -EFAULT;
    2769           0 :         return put_user(head, head_ptr);
    2770             : 
    2771             : err_unlock:
    2772             :         rcu_read_unlock();
    2773             : 
    2774           0 :         return ret;
    2775             : }
    2776             : 
    2777             : /*
    2778             :  * Process a futex-list entry, check whether it's owned by the
    2779             :  * dying task, and do notification if so:
    2780             :  */
    2781           0 : int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
    2782             : {
    2783             :         u32 uval, uninitialized_var(nval), mval;
    2784             : 
    2785             : retry:
    2786           0 :         if (get_user(uval, uaddr))
    2787             :                 return -1;
    2788             : 
    2789           0 :         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
    2790             :                 /*
    2791             :                  * Ok, this dying thread is truly holding a futex
    2792             :                  * of interest. Set the OWNER_DIED bit atomically
    2793             :                  * via cmpxchg, and if the value had FUTEX_WAITERS
    2794             :                  * set, wake up a waiter (if any). (We have to do a
    2795             :                  * futex_wake() even if OWNER_DIED is already set -
    2796             :                  * to handle the rare but possible case of recursive
    2797             :                  * thread-death.) The rest of the cleanup is done in
    2798             :                  * userspace.
    2799             :                  */
    2800           0 :                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
    2801             :                 /*
    2802             :                  * We are not holding a lock here, but we want to have
    2803             :                  * the pagefault_disable/enable() protection because
    2804             :                  * we want to handle the fault gracefully. If the
    2805             :                  * access fails we try to fault in the futex with R/W
    2806             :                  * verification via get_user_pages. get_user() above
    2807             :                  * does not guarantee R/W access. If that fails we
    2808             :                  * give up and leave the futex locked.
    2809             :                  */
    2810           0 :                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
    2811           0 :                         if (fault_in_user_writeable(uaddr))
    2812             :                                 return -1;
    2813             :                         goto retry;
    2814             :                 }
    2815           0 :                 if (nval != uval)
    2816             :                         goto retry;
    2817             : 
    2818             :                 /*
    2819             :                  * Wake robust non-PI futexes here. The wakeup of
    2820             :                  * PI futexes happens in exit_pi_state():
    2821             :                  */
    2822           0 :                 if (!pi && (uval & FUTEX_WAITERS))
    2823           0 :                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
    2824             :         }
    2825             :         return 0;
    2826             : }
    2827             : 
    2828             : /*
    2829             :  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
    2830             :  */
    2831             : static inline int fetch_robust_entry(struct robust_list __user **entry,
    2832             :                                      struct robust_list __user * __user *head,
    2833             :                                      unsigned int *pi)
    2834             : {
    2835             :         unsigned long uentry;
    2836             : 
    2837         472 :         if (get_user(uentry, (unsigned long __user *)head))
    2838             :                 return -EFAULT;
    2839             : 
    2840         472 :         *entry = (void __user *)(uentry & ~1UL);
    2841         472 :         *pi = uentry & 1;
    2842             : 
    2843             :         return 0;
    2844             : }
    2845             : 
    2846             : /*
    2847             :  * Walk curr->robust_list (very carefully, it's a userspace list!)
    2848             :  * and mark any locks found there dead, and notify any waiters.
    2849             :  *
    2850             :  * We silently return on any sign of list-walking problem.
    2851             :  */
    2852         236 : void exit_robust_list(struct task_struct *curr)
    2853             : {
    2854         236 :         struct robust_list_head __user *head = curr->robust_list;
    2855             :         struct robust_list __user *entry, *next_entry, *pending;
    2856             :         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
    2857             :         unsigned int uninitialized_var(next_pi);
    2858             :         unsigned long futex_offset;
    2859             :         int rc;
    2860             : 
    2861         236 :         if (!futex_cmpxchg_enabled)
    2862             :                 return;
    2863             : 
    2864             :         /*
    2865             :          * Fetch the list head (which was registered earlier, via
    2866             :          * sys_set_robust_list()):
    2867             :          */
    2868         472 :         if (fetch_robust_entry(&entry, &head->list.next, &pi))
    2869             :                 return;
    2870             :         /*
    2871             :          * Fetch the relative futex offset:
    2872             :          */
    2873         236 :         if (get_user(futex_offset, &head->futex_offset))
    2874             :                 return;
    2875             :         /*
    2876             :          * Fetch any possibly pending lock-add first, and handle it
    2877             :          * if it exists:
    2878             :          */
    2879         472 :         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
    2880             :                 return;
    2881             : 
    2882             :         next_entry = NULL;      /* avoid warning with gcc */
    2883         236 :         while (entry != &head->list) {
    2884             :                 /*
    2885             :                  * Fetch the next entry in the list before calling
    2886             :                  * handle_futex_death:
    2887             :                  */
    2888           0 :                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
    2889             :                 /*
    2890             :                  * A pending lock might already be on the list, so
    2891             :                  * don't process it twice:
    2892             :                  */
    2893           0 :                 if (entry != pending)
    2894           0 :                         if (handle_futex_death((void __user *)entry + futex_offset,
    2895             :                                                 curr, pi))
    2896             :                                 return;
    2897           0 :                 if (rc)
    2898             :                         return;
    2899             :                 entry = next_entry;
    2900             :                 pi = next_pi;
    2901             :                 /*
    2902             :                  * Avoid excessively long or circular lists:
    2903             :                  */
    2904           0 :                 if (!--limit)
    2905             :                         break;
    2906             : 
    2907           0 :                 cond_resched();
    2908             :         }
    2909             : 
    2910         236 :         if (pending)
    2911           0 :                 handle_futex_death((void __user *)pending + futex_offset,
    2912             :                                    curr, pip);
    2913             : }
    2914             : 
    2915      864482 : long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
    2916             :                 u32 __user *uaddr2, u32 val2, u32 val3)
    2917             : {
    2918      864482 :         int cmd = op & FUTEX_CMD_MASK;
    2919             :         unsigned int flags = 0;
    2920             : 
    2921      864482 :         if (!(op & FUTEX_PRIVATE_FLAG))
    2922             :                 flags |= FLAGS_SHARED;
    2923             : 
    2924      864482 :         if (op & FUTEX_CLOCK_REALTIME) {
    2925         239 :                 flags |= FLAGS_CLOCKRT;
    2926         239 :                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
    2927             :                         return -ENOSYS;
    2928             :         }
    2929             : 
    2930             :         switch (cmd) {
    2931             :         case FUTEX_LOCK_PI:
    2932             :         case FUTEX_UNLOCK_PI:
    2933             :         case FUTEX_TRYLOCK_PI:
    2934             :         case FUTEX_WAIT_REQUEUE_PI:
    2935             :         case FUTEX_CMP_REQUEUE_PI:
    2936           0 :                 if (!futex_cmpxchg_enabled)
    2937             :                         return -ENOSYS;
    2938             :         }
    2939             : 
    2940      864482 :         switch (cmd) {
    2941             :         case FUTEX_WAIT:
    2942      345299 :                 val3 = FUTEX_BITSET_MATCH_ANY;
    2943             :         case FUTEX_WAIT_BITSET:
    2944      345538 :                 return futex_wait(uaddr, flags, val, timeout, val3);
    2945             :         case FUTEX_WAKE:
    2946      345807 :                 val3 = FUTEX_BITSET_MATCH_ANY;
    2947             :         case FUTEX_WAKE_BITSET:
    2948      345807 :                 return futex_wake(uaddr, flags, val, val3);
    2949             :         case FUTEX_REQUEUE:
    2950           0 :                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
    2951             :         case FUTEX_CMP_REQUEUE:
    2952           0 :                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
    2953             :         case FUTEX_WAKE_OP:
    2954      173137 :                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
    2955             :         case FUTEX_LOCK_PI:
    2956           0 :                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
    2957             :         case FUTEX_UNLOCK_PI:
    2958           0 :                 return futex_unlock_pi(uaddr, flags);
    2959             :         case FUTEX_TRYLOCK_PI:
    2960           0 :                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
    2961             :         case FUTEX_WAIT_REQUEUE_PI:
    2962           0 :                 val3 = FUTEX_BITSET_MATCH_ANY;
    2963           0 :                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
    2964             :                                              uaddr2);
    2965             :         case FUTEX_CMP_REQUEUE_PI:
    2966           0 :                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
    2967             :         }
    2968             :         return -ENOSYS;
    2969             : }
    2970             : 
    2971             : 
    2972     1728961 : SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
    2973             :                 struct timespec __user *, utime, u32 __user *, uaddr2,
    2974             :                 u32, val3)
    2975             : {
    2976             :         struct timespec ts;
    2977             :         ktime_t t, *tp = NULL;
    2978             :         u32 val2 = 0;
    2979      864482 :         int cmd = op & FUTEX_CMD_MASK;
    2980             : 
    2981      864482 :         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
    2982      346274 :                       cmd == FUTEX_WAIT_BITSET ||
    2983      173137 :                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
    2984           0 :                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
    2985             :                         return -EFAULT;
    2986           0 :                 if (!timespec_valid(&ts))
    2987             :                         return -EINVAL;
    2988             : 
    2989           0 :                 t = timespec_to_ktime(ts);
    2990           0 :                 if (cmd == FUTEX_WAIT)
    2991           0 :                         t = ktime_add_safe(ktime_get(), t);
    2992             :                 tp = &t;
    2993             :         }
    2994             :         /*
    2995             :          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
    2996             :          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
    2997             :          */
    2998     1728964 :         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
    2999     1728964 :             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
    3000      173137 :                 val2 = (u32) (unsigned long) utime;
    3001             : 
    3002      864482 :         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
    3003             : }
    3004             : 
    3005           1 : static void __init futex_detect_cmpxchg(void)
    3006             : {
    3007             : #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
    3008             :         u32 curval;
    3009             : 
    3010             :         /*
    3011             :          * This will fail and we want it. Some arch implementations do
    3012             :          * runtime detection of the futex_atomic_cmpxchg_inatomic()
    3013             :          * functionality. We want to know that before we call in any
    3014             :          * of the complex code paths. Also we want to prevent
    3015             :          * registration of robust lists in that case. NULL is
    3016             :          * guaranteed to fault and we get -EFAULT on functional
    3017             :          * implementation, the non-functional ones will return
    3018             :          * -ENOSYS.
    3019             :          */
    3020           1 :         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
    3021           1 :                 futex_cmpxchg_enabled = 1;
    3022             : #endif
    3023           1 : }
    3024             : 
    3025           1 : static int __init futex_init(void)
    3026             : {
    3027             :         unsigned int futex_shift;
    3028             :         unsigned long i;
    3029             : 
    3030             : #if CONFIG_BASE_SMALL
    3031             :         futex_hashsize = 16;
    3032             : #else
    3033           1 :         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
    3034             : #endif
    3035             : 
    3036           1 :         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
    3037             :                                                futex_hashsize, 0,
    3038             :                                                futex_hashsize < 256 ? HASH_SMALL : 0,
    3039             :                                                &futex_shift, NULL,
    3040             :                                                futex_hashsize, futex_hashsize);
    3041           1 :         futex_hashsize = 1UL << futex_shift;
    3042             : 
    3043           1 :         futex_detect_cmpxchg();
    3044             : 
    3045         257 :         for (i = 0; i < futex_hashsize; i++) {
    3046         256 :                 atomic_set(&futex_queues[i].waiters, 0);
    3047             :                 plist_head_init(&futex_queues[i].chain);
    3048             :                 spin_lock_init(&futex_queues[i].lock);
    3049             :         }
    3050             : 
    3051           1 :         return 0;
    3052             : }
    3053             : __initcall(futex_init);

Generated by: LCOV version 1.11